74 research outputs found

    A Ratio-Less 10-Transistor Cell and Static Column Retention Loop Structure for Fully Digital SRAM

    Get PDF
    In this paper, a new memory cell along with a new peripheral circuit for SRAM in ultra fine advanced process technologies is presented. A unique feature of the proposed circuit technique is its circuit design concept to achieve the fully digital ratio-less operation. This enables memory cell design that is free from consideration of the Static Noise Margin (SNM). Furthermore, it enables SRAM function without the restriction of transistor parameter (W/L) settings in circuit design and the dependency on local process variation. To achieve these unique features, we propose (1) a ratio-less memory cell in which the flip/flop loop can be broken in write operation and a push-pull tri-state buffer for secure read operation and (2) the configuration of a static Column Retention Loop (CRL) to prevent loss of memory cell data in the write half-select state. Combining these two key circuit techniques, a new SRAM circuit that is free from design restriction of SNM was developed. A 0.18-μm 1024-bit MOSAIC SRAM TEG consisting of memory cells having all combinations of gate sizes of 10 transistors differing by two orders of magnitude was developed and tested to verify the proposed circuits.4th IEEE International Memory Workshop (IMW 2012), 20-23 May 2012, Milan, Ital

    Dark Rearing Promotes the Recovery of Visual Cortical Responses but Not the Morphology of Geniculocortical Axons in Amblyopic Cat

    Get PDF
    Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    Circadian protection against bacterial skin infection by epidermal CXCL14-mediated innate immunity

    Get PDF
    体内時計は夜間に自然免疫を発動 --皮膚ケモカインによる自然免疫機構--. 京都大学プレスリリース. 2022-06-16.Biological clocks set for skin immunity. 京都大学プレスリリース. 2022-06-21.The epidermis is the outermost layer of the skin and the body’s primary barrier to external pathogens; however, the early epidermal immune response remains to be mechanistically understood. We show that the chemokine CXCL14, produced by epidermal keratinocytes, exhibits robust circadian fluctuations and initiates innate immunity. Clearance of the skin pathogen Staphylococcus aureus in nocturnal mice was associated with CXCL14 expression, which was high during subjective daytime and low at night. In contrast, in marmosets, a diurnal primate, circadian CXCL14 expression was reversed. Rhythmically expressed CXCL14 binds to S. aureus DNA and induces inflammatory cytokine production by activating Toll-like receptor (TLR)9-dependent innate pathways in dendritic cells and macrophages underneath the epidermis. CXCL14 also promoted phagocytosis by macrophages in a TLR9-independent manner. These data indicate that circadian production of the epidermal chemokine CXCL14 rhythmically suppresses skin bacterial proliferation in mammals by activating the innate immune system

    Factors that contribute to long-term survival in patients with leukemia not in remission at allogeneic hematopoietic cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been insufficient examination of the factors affecting long-term survival of more than 5 years in patients with leukemia that is not in remission at transplantation.</p> <p>Method</p> <p>We retrospectively analyzed leukemia not in remission at allogeneic hematopoietic cell transplantation (allo-HCT) performed at our institution between January 1999 and July 2009. Forty-two patients with a median age of 39 years received intensified conditioning (n = 9), standard (n = 12) or reduced-intensity conditioning (n = 21) for allo-HCT. Fourteen patients received individual chemotherapy for cytoreduction during the three weeks prior to reduced-intensity conditioning. Diagnoses comprised acute leukemia (n = 29), chronic myeloid leukemia-accelerated phase (n = 2), myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) (n = 10) and plasma cell leukemia (n = 1). In those with acute leukemia, cytogenetic abnormalities were intermediate (44%) or poor (56%). The median number of blast cells in bone marrow (BM) was 26.0% (range; 0.2-100) before the start of chemotherapy for allo-HCT. Six patients had leukemic involvement of the central nervous system. Stem cell sources were related BM (7%), related peripheral blood (31%), unrelated BM (48%) and unrelated cord blood (CB) (14%).</p> <p>Results</p> <p>Engraftment was achieved in 33 (79%) of 42 patients. Median time to engraftment was 17 days (range: 9-32). At five years, the cumulative probabilities of acute graft-versus-host disease (GVHD) and chronic GVHD were 63% and 37%, respectively. With a median follow-up of 85 months for surviving patients, the five-year Kaplan-Meier estimates of leukemia-free survival rate and overall survival (OS) were 17% and 19%, respectively. At five years, the cumulative probability of non-relapse mortality was 38%. In the univariable analyses of the influence of pre-transplant variables on OS, poor-risk cytogenetics, number of BM blasts (>26%), MDS overt AML and CB as stem cell source were significantly associated with worse prognosis (p = .03, p = .01, p = .02 and p < .001, respectively). In addition, based on a landmark analysis at 6 months post-transplant, the five-year Kaplan-Meier estimates of OS in patients with and without prior history of chronic GVHD were 64% and 17% (p = .022), respectively.</p> <p>Conclusion</p> <p>Graft-versus-leukemia effects possibly mediated by chronic GVHD may have played a crucial role in long-term survival in, or cure of active leukemia.</p

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Second Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey (SDSS) has validated and made publicly available its Second Data Release. This data release consists of 3324 deg2 of five-band (ugriz) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars, and calibrating blank sky patches selected over 2627 deg2 of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ≈ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point-spread function magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 to 9200 Å at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines and included in the Second Data Release. Further characteristics of the data are described, as are the data products themselves and the tools for accessing them

    The Third Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Third Data Release of the Sloan Digital Sky Survey (SDSS). This release, containing data taken up through June 2003, includes imaging data in five bands over 5282 deg^2, photometric and astrometric catalogs of the 141 million objects detected in these imaging data, and spectra of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both images and spectroscopy are unchanged from those used in our Second Data Release.Comment: 14 pages, including 2 postscript figures. Submitted to AJ. Data available at http://www.sdss.org/dr

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore