39,491 research outputs found

    Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects

    Get PDF
    A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads

    Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3

    Full text link
    We study the pre-K-edge structure of the resonant X-ray scattering for forbidden reflections (anomalous scattering) in LaMnO3, using the band calculation based on the local density approximation. We find a two-peak structure with an intensity approximately 1/100 of that of the main peak. This originates from a mixing of 4p states of Mn to 3d states of neighboring Mn sites. The effect is enhanced by an interference with the tail of the main peak. The effect of the quadrupole transition is found to be one order of magnitude smaller than that of the dipole transition, modifying slightly the azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Guiding of positive streamers in nitrogen, argon and N<sub>2</sub>-O<sub>2</sub> mixtures by very low <i>n</i><sub>e</sub> laser-induced pre-ionization trails

    Get PDF
    In previous work we have shown that positive streamers in pure nitrogen can be guided by a laser-induced trail of low electron density. Here we show more detailed results from such measurements. We show the sensitivity of this laser-guiding on pressure p and found that the maximum delay between the laser pulse and voltage pulse for guiding scales with something between 1/p1/p and 1/p21/p^{2}. We also show that when we use a narrower laser beam the laser guiding occurs less frequent and that when we move the laser beam away from the symmetry axis, guiding hardly is observed. Finally we show that laser guiding can also occur in pure argon

    Semiclassical description of spin ladders

    Full text link
    The Heisenberg spin ladder is studied in the semiclassical limit, via a mapping to the nonlinear σ\sigma model. Different treatments are needed if the inter-chain coupling KK is small, intermediate or large. For intermediate coupling a single nonlinear σ\sigma model is used for the ladder. Its predicts a spin gap for all nonzero values of KK if the sum s+s~s+\tilde s of the spins of the two chains is an integer, and no gap otherwise. For small KK, a better treatment proceeds by coupling two nonlinear sigma models, one for each chain. For integer s=s~s=\tilde s, the saddle-point approximation predicts a sharp drop in the gap as KK increases from zero. A Monte-Carlo simulation of a spin 1 ladder is presented which supports the analytical results.Comment: 8 pages, RevTeX 3.0, 4 PostScript figure

    High purity bright single photon source

    Full text link
    Using cavity-enhanced non-degenerate parametric downconversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc

    Guiding of positive streamers in nitrogen, argon and N<sub>2</sub>-O<sub>2</sub> mixtures by very low <i>n</i><sub>e</sub> laser-induced pre-ionization trails

    Get PDF
    In previous work we have shown that positive streamers in pure nitrogen can be guided by a laser-induced trail of low electron density. Here we show more detailed results from such measurements. We show the sensitivity of this laser-guiding on pressure p and found that the maximum delay between the laser pulse and voltage pulse for guiding scales with something between 1/p1/p and 1/p21/p^{2}. We also show that when we use a narrower laser beam the laser guiding occurs less frequent and that when we move the laser beam away from the symmetry axis, guiding hardly is observed. Finally we show that laser guiding can also occur in pure argon

    Modified Spin Wave Analysis of Low Temperature Properties of Spin-1/2 Frustrated Ferromagnetic Ladder

    Full text link
    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interaction are investigated using the modified spin wave approximation in the region with ferromagnetic ground state. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.Comment: 9 pages, 8 figure
    corecore