39,491 research outputs found
Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects
A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads
Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3
We study the pre-K-edge structure of the resonant X-ray scattering for
forbidden reflections (anomalous scattering) in LaMnO3, using the band
calculation based on the local density approximation. We find a two-peak
structure with an intensity approximately 1/100 of that of the main peak. This
originates from a mixing of 4p states of Mn to 3d states of neighboring Mn
sites. The effect is enhanced by an interference with the tail of the main
peak. The effect of the quadrupole transition is found to be one order of
magnitude smaller than that of the dipole transition, modifying slightly the
azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp
Guiding of positive streamers in nitrogen, argon and N<sub>2</sub>-O<sub>2</sub> mixtures by very low <i>n</i><sub>e</sub> laser-induced pre-ionization trails
In previous work we have shown that positive streamers in pure nitrogen can be guided by a laser-induced trail of low electron density. Here we show more detailed results from such measurements. We show the sensitivity of this laser-guiding on pressure p and found that the maximum delay between the laser pulse and voltage pulse for guiding scales with something between and . We also show that when we use a narrower laser beam the laser guiding occurs less frequent and that when we move the laser beam away from the symmetry axis, guiding hardly is observed. Finally we show that laser guiding can also occur in pure argon
Semiclassical description of spin ladders
The Heisenberg spin ladder is studied in the semiclassical limit, via a
mapping to the nonlinear model. Different treatments are needed if the
inter-chain coupling is small, intermediate or large. For intermediate
coupling a single nonlinear model is used for the ladder. Its predicts
a spin gap for all nonzero values of if the sum of the spins
of the two chains is an integer, and no gap otherwise. For small , a better
treatment proceeds by coupling two nonlinear sigma models, one for each chain.
For integer , the saddle-point approximation predicts a sharp drop
in the gap as increases from zero. A Monte-Carlo simulation of a spin 1
ladder is presented which supports the analytical results.Comment: 8 pages, RevTeX 3.0, 4 PostScript figure
High purity bright single photon source
Using cavity-enhanced non-degenerate parametric downconversion, we have built
a frequency tunable source of heralded single photons with a narrow bandwidth
of 8 MHz, making it compatible with atomic quantum memories. The photon state
is 70% pure single photon as characterized by a tomographic measurement and
reconstruction of the quantum state, revealing a clearly negative Wigner
function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz
bandwidth, making it one of the brightest single photon sources available. We
also investigate the correlation function of the down-converted fields using a
combination of two very distinct detection methods; photon counting and
homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc
Guiding of positive streamers in nitrogen, argon and N<sub>2</sub>-O<sub>2</sub> mixtures by very low <i>n</i><sub>e</sub> laser-induced pre-ionization trails
In previous work we have shown that positive streamers in pure nitrogen can be guided by a laser-induced trail of low electron density. Here we show more detailed results from such measurements. We show the sensitivity of this laser-guiding on pressure p and found that the maximum delay between the laser pulse and voltage pulse for guiding scales with something between and . We also show that when we use a narrower laser beam the laser guiding occurs less frequent and that when we move the laser beam away from the symmetry axis, guiding hardly is observed. Finally we show that laser guiding can also occur in pure argon
Modified Spin Wave Analysis of Low Temperature Properties of Spin-1/2 Frustrated Ferromagnetic Ladder
Low temperature properties of the spin-1/2 frustrated ladder with
ferromagnetic rungs and legs, and two different antiferromagnetic next nearest
neighbor interaction are investigated using the modified spin wave
approximation in the region with ferromagnetic ground state. The temperature
dependence of the magnetic susceptibility and magnetic structure factors is
calculated. The results are consistent with the numerical exact diagonalization
results in the intermediate temperature range. Below this temperature range,
the finite size effect is significant in the numerical diagonalization results,
while the modified spin wave approximation gives more reliable results. The low
temperature properties near the limit of the stability of the ferromagnetic
ground state are also discussed.Comment: 9 pages, 8 figure
- …