7,614 research outputs found

    Outcomes after stepwise ablation for persistent atrial fibrillation in patients with heart failure

    Get PDF
    AbstractBackgroundThere is limited data regarding the outcomes after stepwise ablation for persistent atrial fibrillation (AF) in patients with heart failure (HF).Methods and resultsPatients without structural heart disease undergoing stepwise ablation for persistent AF (continuous AF≤1 year) were studied (n=108; age, 61±10 years) and 32 patients had a history of HF. The HF patients were further grouped on the basis of left ventricular ejection fraction (LVEF)≤45% (n=15) and >45% (n=17). During a median follow-up period of 2.2 years, repeated ablations were necessary in 65 patients. The proportion of patients that were arrhythmia free 1 year after the last ablation was 67% in patients with LVEF≤45%, 86% in LVEF>45%, and 91% in no HF (p=0.0009). In patients with LVEF≤45%, the AF burden was reduced to less than one paroxysmal episode per month, and patients with and without recurrences both showed significant increases in LVEF over the follow-up period (38±7% to 60±10% and 37±6% to 53±10%, respectively).ConclusionsHF patients with LVEF≤45% had lower chances to remain free from arrhythmias after stepwise ablation for persistent AF than those with LVEF>45%. Nevertheless, LVEF also improved in patients with recurrences, reflecting the observed reduction in AF burden and emphasizing the benefits of ablation

    A new concept of a hybrid trapped field magnet lens

    Get PDF
    In this paper, a new concept of a hybrid trapped field magnet lens (HTFML) is proposed. The HTMFL exploits the “vortex pinning effect” of an outer superconducting bulk cylinder, which is magnetized as a trapped field magnet (TFM) using field-cooled magnetization (FCM), and the “diamagnetic shielding effect” of an inner bulk magnetic lens to generate a concentrated magnetic field higher than the trapped field from the TFM in the bore of the magnetic lens. This requires that, during the FCM process, the outer cylinder is in the normal state (T > superconducting transition temperature, Tc) and the inner lens is in the superconducting state (T < Tc) when the external magnetizing field is applied, followed by cooling to an appropriate operating temperature, then removing the external field. This is explored for two potential cases: 1) exploiting the difference in Tc of two different bulk materials (“case-1”), e.g. MgB2 (Tc = 39 K) and GdBaCuO (Tc = 92 K) or 2) using the same material for the whole HTFML, e.g., GdBaCuO, but utilizing individually-controlled cryostats, the same cryostat with different cooling loops or coolants, or heaters that keep the outer bulk cylinder at a temperature above Tc to achieve the same desired effect. The HTFML is verified using numerical simulations for “case-1” using an MgB2 cylinder and GdBaCuO lens pair and for “case-2” using a GdBaCuO cylinder and GdBaCuO lens pair. As a result, the HTFML could reliably generate a concentrated magnetic field Bc = 4.73 T with the external magnetizing field Bapp = 3 T in the “case-1, and a higher Bc = 13.49 T with higher Bapp = 10 T in the “case-2,” respectively. This could, for example, be used to enhance the magnetic field in the bore of a bulk superconducting NMR/MRI system to improve its resolution

    A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis.

    Get PDF
    In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix

    The Magondi Belt in southern Africa: Implication for Paleoproterozoic crustal evolution in the northwestern Zimbabwe Craton

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OG] Polar Geosciences, Wed. 4 Dec. / 3F Seminar room, National Institute of Polar Researc
    corecore