56,669 research outputs found

    Thermodynamical Bethe Ansatz and Condensed Matter

    Full text link
    The basics of the thermodynamic Bethe ansatz equation are given. The simplest case is repulsive delta function bosons, the thermodynamic equation contains only one unknown function. We also treat the XXX model with spin 1/2 and the XXZ model and the XYZ model. This method is very useful for the investigation of the low temperature thermodynamics of solvable systems.Comment: 52 pages, 6 figures, latex, lamuphys.st

    Takahashi Integral Equation and High-Temperature Expansion of the Heisenberg Chain

    Full text link
    Recently a new integral equation describing the thermodynamics of the 1D Heisenberg model was discovered by Takahashi. Using the integral equation we have succeeded in obtaining the high temperature expansion of the specific heat and the magnetic susceptibility up to O((J/T)^{100}). This is much higher than those obtained so far by the standard methods such as the linked-cluster algorithm. Our results will be useful to examine various approximation methods to extrapolate the high temperature expansion to the low temperature region.Comment: 5 pages, 4 figures, 2 table

    Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    Get PDF
    A low pressure (~ 0.5 mTorr in xenon and ~ 1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon

    Trans-Magnetosonic Accretion in a Black Hole Magnetosphere

    Full text link
    We present the critical conditions for hot trans-fast magnetohydrodynamical (MHD) flows in a stationary and axisymmetric black-hole magnetosphere. To accrete onto the black hole, the MHD flow injected from a plasma source with low velocity must pass through the fast magnetosonic point after passing through the ``inner'' or ``outer'' Alfven point. We find that a trans-fast MHD accretion solution related to the inner Alfven point is invalid when the hydrodynamical effects on the MHD flow dominate at the magnetosonic point, while the other accretion solution related to the outer Alfven point is invalid when the total angular momentum of the MHD flow is seriously large. When both regimes of the accretion solutions are valid in the black hole magnetosphere, we can expect the transition between the two regimes. The variety of these solutions would be important in many highly energetic astrophysical situations.Comment: 27 pages, 12 figures, accepted to Ap

    Anisotropic radiation field and trapped photons around the Kerr black hole

    Full text link
    Aims. In order to understand the anisotropic properties of local radiation field in the curved spacetime around a rotating black hole, we investigate the appearance of a black hole seen by an observer located near the black hole. When the black hole is in front of a source of illumination the black hole cast shadow in the illumination. Accordingly, the appearance of the black hole is called the black hole shadow. Methods. We first analytically describe the shape of the shadow in terms of constants of motion for a photon seen by the observer in the locally non-rotating reference frame (LNRF). Then, we newly derive the useful equation for the solid angle of the shadow. In a third step, we can easily plot the apparent image of the black hole shadow. Finally, we also calculate the ratio of the photon trapped by the hole and the escape photon to the distant region for photons emitted near the black hole. Results. From the shape and the size of the black hole shadow, we can understand the signatures of the curved spacetime; i.e., the mass and spin of the black hole. Our equations for the solid angle of the shadow has technical advantages in calculating the photon trapping ratio. That is, this equation is computationally very easy, and gives extremely precise results. This is because this equation is described by the one-parameter integration with given values of the spin and location for the black hole considered. After this, the solid angle can be obtained without numerical calculations of the null geodesics for photons.Comment: Accepted for publication in A&
    • …
    corecore