54 research outputs found

    How the Foot Modulates its Mechanics During Uphill and Downhill Walking

    Get PDF
    The foot\u27s biomechanical role in walking on sloped surfaces is currently unclear. While previous biomechanics studies have examined the hip, knee, and ankle, the foot is oversimplified as a rigid-body segment. This oversimplification overshadows its complex structure and function. In this project, we use an innovative multi-segment foot model to explore how the foot adapts its mechanics to incline and decline walking. Preliminary results have revealed that the foot is capable of adapting its mechanical work profile to both incline and decline walking. Specifically, the foot can increase its positive work output (i.e., increased energy generation) during inclined walking to help propel the body upwards, and it increases its negative work output (i.e., increased energy dissipation) during declined walking to help slow the body down. These results are informative for understanding the role the foot plays during walking, and may help in the design of prosthetic, orthotic, or exoskeletal devices that are supposed to mimic the foot’s function

    The foot and ankle structures reveal emergent properties analogous to passive springs during human walking

    Get PDF
    An objective understanding of human foot and ankle function can drive innovations of bio-inspired wearable devices. Specifically, knowledge regarding how mechanical force and work are produced within the human foot-ankle structures can help determine what type of materials or components are required to engineer devices. In this study, we characterized the combined functions of the foot and ankle structures during walking by synthesizing the total force, displacement, and work profiles from structures distal to the shank. Eleven healthy adults walked at four scaled speeds. We quantified the ground reaction force and center-of-pressure displacement in the shank’s coordinate system during stance phase and the total mechanical work done by these structures. This comprehensive analysis revealed emergent properties of foot-ankle structures that are analogous to passive springs: these structures compressed and recoiled along the longitudinal axis of the shank, and performed near zero or negative net mechanical work across a range of walking speeds. Moreover, the subject-to-subject variability in peak force, total displacement, and work were well explained by three simple factors: body height, mass, and walking speed. We created a regression-based model of stance phase mechanics that can inform the design and customization of wearable devices that may have biomimetic or non-biomimetic structures

    Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device

    Get PDF
    Background: There are many studies that have investigated biomechanical differences among prosthetic feet, but not changes due to adaptation over time. There is a need for objective measures to quantify the process of adaptation for individuals with a transtibial amputation. Mechanical power and work profiles are a primary focus for modern energystorage- and-return type prostheses, which strive to increase energy return from the prosthesis. The amount of energy a prosthesis stores and returns (i.e., negative and positive work) during stance is directly influenced by the user’s loading strategy, which may be sensitive to alterations during the course of an adaptation period. The purpose of this study was to examine changes in lower limb mechanical work profiles during walking following a three-week adaptation to a new prosthesis. Methods: A retrospective analysis was performed on 22 individuals with a unilateral transtibial amputation. Individuals were given a new prosthesis at their current mobility level (K3 or above) and wore it for three weeks. Kinematic and kinetic measures were recorded from overground walking at 0, 1.5, and 3 weeks into the adaptation period at a self-selected pace. Positive and negative work done by the prosthesis and sound ankle-foot were calculated using a unified deformable segment model and a six-degrees-of-freedom model for the knee and hip. Results: Positive work from the prosthesis ankle-foot increased by 6.1% and sound ankle-foot by 5.7% after 3 weeks (p = 0.041, 0.036). No significant changes were seen in negative work from prosthesis or sound ankle-foot (p = 0.115, 0.192). There was also a 4.1% increase in self-selected walking speed after 3 weeks (p = 0.038). Our data exhibited large inter-subject variations, in which some individuals followed group trends in work profiles while others had opposite trends in outcome variables. Conclusions: After a 3-week adaptation, 14 out of 22 individuals with a transtibial amputation increased energy return from the prosthesis. Such findings could indicate that individuals may better utilize the spring-like function of the prosthesis after an adaptation period

    A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study

    Get PDF
    Background: In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user’s paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Methods: Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. Results: The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p \u3c .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). Conclusions: This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke

    Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking

    Get PDF
    Measuring biomechanical work performed by humans and other animals is critical for understanding muscle–tendon function, jointspecific contributions and energy-saving mechanisms during locomotion. Inverse dynamics is often employed to estimate jointlevel contributions, and deformable body estimates can be used to study work performed by the foot. We recently discovered that these commonly used experimental estimates fail to explain whole-body energy changes observed during human walking. By re-analyzing previously published data, we found that about 25% (8 J) of total positive energy changes of/about the body’s center-of-mass and \u3e30% of the energy changes during the Push-off phase of walking were not explained by conventional joint- and segment-level work estimates, exposing a gap in our fundamental understanding of work production during gait. Here, we present a novel Energy-Accounting analysis that integrates various empirical measures of work and energy to elucidate the source of unexplained biomechanical work. We discovered that by extending conventional 3 degree-of-freedom (DOF) inverse dynamics (estimating rotational work about joints) to 6DOF (rotational and translational) analysis of the hip, knee, ankle and foot, we could fully explain the missing positive work. This revealed that Push-off work performed about the hip may be \u3e50% greater than conventionally estimated (9.3 versus 6.0 J, P=0.0002, at 1.4 m s−1 ). Our findings demonstrate that 6DOF analysis (of hip– knee–ankle–foot) better captures energy changes of the body than more conventional 3DOF estimates. These findings refine our fundamental understanding of how work is distributed within the body, which has implications for assistive technology, biomechanical simulations and potentially clinical treatment

    FOOT STRUCUTRES INCREASED POSITIVE MECHANICAL WORK DURING LOADED WALKING.

    Get PDF
    The ankle and foot system is a combination of flexible and adaptable structures. which are analogous to a spring that absorbs/stores and generates/returns mechanical energy during locomotion [1]. Studies have shown that the foot muscles are able to modulate arch compression during static loading conditions [2]. The purpose of this study was to determine how walking with varying levels of added mass affect the combined functional behavior of the foot. We hypothesized that the foot structures would increase the amount of dissipated/absorbed energy when walking with added mass. Eighteen healthy, young participants completed barefoot walking in three randomized loading conditions (0, +15, and +30% of added body mass). The walking speed was targeted at 1.25 m/s (2.8 mph). The mechanical power of the foot during the over-ground trials was quantified using a unified deformable segment analysis by modeling all structures distal to the calcaneus as a deforming body [1]. We quantified the negative and positive mechanical work over stance, by integrating the positive and negative portions of the mechanical power data. Walking with added mass had a significant effect on the magnitude of positive work (p \u3c 0.001), including a 19% increase between 0 and +30% added mass conditions (p \u3c 0.001). There was no significant effect of added mass on negative work (p = 0.055) and on net work (p = 0.402) (Figure 1). Experimental results failed to support our initial hypothesis, as the foot increased the magnitude of positive work, and preserved similar amounts of net negative work (i.e., energy dissipated/absorbed) across varying levels of added mass conditions. Overall, the foot appears to have similar characteristics of a shock absorber- spring complex

    The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study

    Get PDF
    Background: The human ankle joint has an influential role in the regulation of the mechanics and energetics of gait. The human ankle can modulate its joint ‘quasi-stiffness’ (ratio of plantarflexion moment to dorsiflexion displacement) in response to various locomotor tasks (e.g., load carriage). However, the direct effect of ankle stiffness on metabolic energy cost during various tasks is not fully understood. The purpose of this study was to determine how net metabolic energy cost was affected by ankle stiffness while walking under different force demands (i.e., with and without additional load). Methods: Individuals simulated an amputation by using an immobilizer boot with a robotic ankle-foot prosthesis emulator. The prosthetic emulator was controlled to follow five ankle stiffness conditions, based on literature values of human ankle quasi-stiffness. Individuals walked with these five ankle stiffness settings, with and without carrying additional load of approximately 30% of body mass (i.e., ten total trials). Results: Within the range of stiffness we tested, the highest stiffness minimized metabolic cost for both load conditions, including a ~ 3% decrease in metabolic cost for an increase in stiffness of about 0.0480 Nm/deg/kg during normal (no load) walking. Furthermore, the highest stiffness produced the least amount of prosthetic anklefoot positive work, with a difference of ~ 0.04 J/kg from the highest to lowest stiffness condition. Ipsilateral hip positive work did not significantly change across the no load condition but was minimized at the highest stiffness for the additional load conditions. For the additional load conditions, the hip work followed a similar trend as the metabolic cost, suggesting that reducing positive hip work can lower metabolic cost. Conclusion: While ankle stiffness affected the metabolic cost for both load conditions, we found no significant interaction effect between stiffness and load. This may suggest that the importance of the human ankle’s ability to change stiffness during different load carrying tasks may not be driven to minimize metabolic cost. A prosthetic design that can modulate ankle stiffness when transitioning from one locomotor task to another could be valuable, but its importance likely involves factors beyond optimizing metabolic cos

    Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses

    Get PDF
    Stride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users. The purpose of our study was to determine if changes in push-off mechanics affect stride-to-stride fluctuations in transtibial amputees. Twenty-two unilateral transtibial amputees were enrolled in the 6- week cross-over study, where High and Low Activity (based on the Medicare Functional Classification System) prostheses were worn for three weeks each. Data collection took place at the end of the third week. Participants walked on a treadmill in a motion capture laboratory to quantify stride-to-stride fluctuations of the lower extremity joint angle trajectories using the largest Lyapunov Exponent, and over floor-embedded force platforms to enable calculating push-off work from the prosthesis and the sound limb. Push-off work was 140% greater in the High Activity prosthesis compared to the Low Activity prosthesis (p \u3c 0.001), however no significant change was observed in stride-to-stride fluctuations of the ankle between the two prosthesis types (p = 0.576). There was no significant correlation between changes in prosthesis push-off work and the largest Lyapunov exponent. Though differences in push-off work were observed between the two prosthesis types, stride-to-stride fluctuations remained similar, indicating that prosthesis propulsion mechanics may not be a strong determinant of stride-to-stride fluctuations in unpowered transtibial prosthesis users

    Locomotor patterns change over time during walking on an uneven surface

    Get PDF
    During walking, uneven surfaces impose new demands for controlling balance and forward progression at each step. It is unknown to what extent walking may be refined given an amount of stride-to-stride unpredictability at the distal level. Here, we explored the effects of an uneven terrain surface on whole-body locomotor dynamics immediately following exposure and after a familiarization period. Eleven young, unimpaired adults walked for 12 min on flat and uneven terrain treadmills. The whole-body center of mass excursion range (COMexc) and peak velocity (COMvel), step length and width were estimated. On first exposure to uneven terrain, we saw significant increases in medial–lateral COMexc and lateral COMvel, and in the variability of COMexc, COMvel and foot placement in both anterior–posterior and medial–lateral directions. Increases in step width and decreases in step length supported the immediate adoption of a cautious, restrictive solution on uneven terrain. After familiarization, step length increased and the variability of anterior–posterior COMvel and step length reduced, while step width and lateral COMvel reduced, alluding to a refinement of movement and a reduction of conservative strategies over time. However, the variability of medial–lateral COMexc and lateral COMvel increased, consistent with the release of previously constrained degrees of freedom. Despite this increase in variability, a strong relationship between step width and medial–lateral center of mass movement was maintained. Our results indicate that movement strategies of unimpaired adults when walking on uneven terrain can evolve over time with longer exposure to the surface

    Ankle and midtarsal joint quasi-stiffness during walking with added mass

    Get PDF
    Examination of how the ankle and midtarsal joints modulate stiffness in response to increased force demand will aid understanding of overall limb function and inform the development of bio-inspired assistive and robotic devices. The purpose of this study is to identify how ankle and midtarsal joint quasi-stiffness are affected by added body mass during over-ground walking. Healthy participants walked barefoot over-ground at 1.25 m/s wearing a weighted vest with 0%, 15% and 30% additional body mass. The effect of added mass was investigated on ankle and midtarsal joint range of motion (ROM), peak moment and quasi-stiffness. Joint quasi-stiffness was broken into two phases, dorsiflexion (DF) and plantarflexion (PF), representing approximately linear regions of their moment-angle curve. Added mass significantly increased ankle joint quasi-stiffness in DF (p \u3c 0.001) and PF (p \u3c 0.001), as well as midtarsal joint quasi-stiffness in DF (p \u3c 0.006) and PF (p \u3c 0.001). Notably, the midtarsal joint quasi-stiffness during DF was ~2.5 times higher than that of the ankle joint. The increase in midtarsal quasi-stiffness when walking with added mass could not be explained by the windlass mechanism, as the ROM of the metatarsophalangeal joints was not correlated with midtarsal joint quasi-stiffness (r = −0.142, p = 0.540). The likely source for the quasi-stiffness modulation may be from active foot muscles, however, future research is needed to confirm which anatomical structures (passive or active) contribute to the overall joint quasi-stiffness across locomotor tasks
    • …
    corecore