10,083 research outputs found
Constituent quark model for nuclear stopping in high energy nuclear collisions
We study the nuclear stopping in high energy nuclear collisions using the
constituent quark model. It is assumed that wounded nucleons with different
number of interacted quarks hadronize in different ways. The probabilities of
having such wounded nucleons are evaluated for proton-proton, proton-nucleus
and nucleus-nucleus collisions. After examining our model in proton-proton and
proton-nucleus collisions and fixing the hadronization functions, it is
extended to nucleus-nucleus collisions. It is used to calculate the rapidity
distribution and the rapidity shift of final state protons in nucleus-nucleus
collisions. The computed results are in good agreement with the experimental
data on ^{32}\mbox{S} +\ ^{32}\mbox{S} at AGeV and
^{208}\mbox{Pb} +\ ^{208}\mbox{Pb} at AGeV. Theoretical
predictions are also given for proton rapidity distribution in ^{197}\mbox{Au}
+\ ^{197}\mbox{Au} at AGeV (BNL-RHIC). We predict that the
nearly baryon free region will appear in the midrapidity region and the
rapidity shift is .Comment: 40 pages, 16 Postscript figures, submitted to Phys. Rev.
Toward a Neutrino Mass Matrix
One may identify the general properties of the neutrino mass matrix by
generating many random mass matrices and testing them against the results of
the neutrino experiments.Comment: 3 pages, 1 figure, talk at DPF200
- âŠ