696 research outputs found

    Electron-beam propagation in a two-dimensional electron gas

    Full text link
    A quantum mechanical model based on a Green's function approach has been used to calculate the transmission probability of electrons traversing a two-dimensional electron gas injected and detected via mode-selective quantum point contacts. Two-dimensional scattering potentials, back-scattering, and temperature effects were included in order to compare the calculated results with experimentally observed interference patterns. The results yield detailed information about the distribution, size, and the energetic height of the scattering potentials.Comment: 7 pages, 6 figure

    Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers

    Full text link
    Coherent electron transport through a quantum channel in the presence of a general extended scattering potential is investigated using a T-matrix Lippmann-Schwinger approach. The formalism is applied to a quantum wire with Gaussian type scattering potentials, which can be used to model a single impurity, a quantum dot or more complicated structures in the wire. The well known dips in the conductance in the presence of attractive impurities is reproduced. A resonant transmission peak in the conductance is seen as the energy of the incident electron coincides with an energy level in the quantum dot. The conductance through a quantum wire in the presence of an asymmetric potential are also shown. In the case of a narrow potential parallel to the wire we find that two dips appear in the same subband which we ascribe to two quasi bound states originating from the next evanescent mode.Comment: RevTeX with 14 postscript figures include

    Contacts and Edge State Equilibration in the Fractional Quantum Hall Effect

    Full text link
    We develop a simple kinetic equation description of edge state dynamics in the fractional quantum Hall effect (FQHE), which allows us to examine in detail equilibration processes between multiple edge modes. As in the integer quantum Hall effect (IQHE), inter-mode equilibration is a prerequisite for quantization of the Hall conductance. Two sources for such equilibration are considered: Edge impurity scattering and equilibration by the electrical contacts. Several specific models for electrical contacts are introduced and analyzed. For FQHE states in which edge channels move in both directions, such as ν=2/3\nu=2/3, these models for the electrical contacts {\it do not} equilibrate the edge modes, resulting in a non-quantized Hall conductance, even in a four-terminal measurement. Inclusion of edge-impurity scattering, which {\it directly} transfers charge between channels, is shown to restore the four-terminal quantized conductance. For specific filling factors, notably ν=4/5\nu =4/5 and ν=4/3\nu=4/3, the equilibration length due to impurity scattering diverges in the zero temperature limit, which should lead to a breakdown of quantization for small samples at low temperatures. Experimental implications are discussed.Comment: 14 pages REVTeX, 6 postscript figures (uuencoded and compressed

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    The role of calcium channels in osteocyte function

    Get PDF
    Abstract Osteocytic response to stretching, which is potentiated by PTH, is distinct from that of osteoblast to high frequency strain. A MAPK dependent signaling pathway is suggested in the osteoblast response. At least two different types of mechanotransduction pathways are present in bone cells of osteoblastic lineage

    Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence

    Full text link
    By means of the molecular dynamics simulation on gradual cooling processes, we investigate magnetic properties of classical spin systems only with the magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on their finite-size effect, particularly their boundary geometry dependence, we study two finite dipolar squares cut out from a square lattice with Φ=0\Phi=0 and π/4\pi/4, where Φ\Phi is an angle between the direction of the lattice axis and that of the square boundary. Distinctly different results are obtained in the two dipolar squares. In the Φ=0\Phi=0 square, the ``from-edge-to-interior freezing'' of spins is observed. Its ground state has a multi-domain structure whose domains consist of the two among infinitely (continuously) degenerated Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed in parallel to the two lattice axes. In the Φ=π/4\Phi=\pi/4 square, on the other hand, the freezing starts from the interior of the square, and its ground state is nearly in a single domain with one of the two af-FMC orders. These geometry effects are argued to originate from the anisotropic nature of the dipole-dipole interaction which depends on the relative direction of sites in a real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa

    Andreev Reflection in Strong Magnetic Fields

    Full text link
    We have studied the interplay of Andreev reflection and cyclotron motion of quasiparticles at a superconductor-normal-metal interface with a strong magnetic field applied parallel to the interface. Bound states are formed due to the confinement introduced both by the external magnetic field and the superconducting gap. These bound states are a coherent superposition of electron and hole edge excitations similar to those realized in finite quantum-Hall samples. We find the energy spectrum for these Andreev edge states and calculate transport properties.Comment: 5 pages, 3 figures, RevTex, revised to include more detailed discussion of currents and transpor

    Resonance Patterns of an Antidot Cluster: From Classical to Quantum Ballistics

    Full text link
    We explain the experimentally observed Aharonov-Bohm (AB) resonance patterns of an antidot cluster by means of quantum and classical simulations and Feynman path integral theory. We demonstrate that the observed behavior of the AB period signals the crossover from a low B regime which can be understood in terms of electrons following classical orbits to an inherently quantum high B regime where this classical picture and semiclassical theories based on it do not apply.Comment: 5 pages revtex + 2 postscript figure

    Normalization of Voltage-Sensitive Dye Signal with Functional Activity Measures

    Get PDF
    In general, signal amplitude in optical imaging is normalized using the well-established ΔF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the ΔF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the ΔF/F method may, to an extent, be mitigated by a novel method of normalization, ΔF/ΔFepileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of “hypersynchronized” bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional ΔF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization-independent metrics such as waveform propagation patterns, oscillations in single detectors, and phase relationships between detector pairs may better capture the biological information which is obtained by high-sensitivity imaging

    Geometry-dependent scattering through quantum billiards: Experiment and theory

    Full text link
    We present experimental studies of the geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum mechanical scattering calculations and find an excellent agreement with the experimental results. We also carry out the semiclassical calculations where the conductance is given as a sum of all classical trajectories between the leads, each of them carrying the quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of non-classical "ghost" trajectories that include classically forbidden reflection off the lead mouths.Comment: 4 pages, 4 figure
    • …
    corecore