5,507 research outputs found
Correlation between Tc and Lattice Parameters of Novel Superconducting NaxCoO2 yH2O
We synthesized the five batches of the samples of the novel P3 type
superconductor, Na(HO)CoOHO, by the
soft chemical process starting from -NaCoO. The chemical and
structural properties varied rather widely from batch to batch, with a result
that varied from 4.6 K to 3.2 K. The magnetic susceptibility above
shows upturn at low temperature as in the case of the P2 phase. The
seems to be well correlated to the lattice parameters.Comment: 2 pages, 2 figures, and 1 table, to be published in J. Phys. Soc.
Jpn. 73 (9) with possible minor revision
Constraints on Neutrino Masses from Weak Lensing
The weak lensing (WL) distortions of distant galaxy images are sensitive to
neutrino masses by probing the suppression effect on clustering strengths of
total matter in large-scale structure. We use the latest measurement of WL
correlations, the CFHTLS data, to explore constraints on neutrino masses. We
find that, while the WL data alone cannot place a stringent limit on neutrino
masses due to parameter degeneracies, the constraint can be significantly
improved when combined with other cosmological probes, the WMAP 5-year (WMAP5)
data and the distance measurements of type-Ia supernovae (SNe) and baryon
acoustic oscillations (BAO). The upper bounds on the sum of neutrino masses are
m_tot = 1.1, 0.76 and 0.54 eV (95% CL) for WL+WMAP5, WMAP5+SNe+BAO, and
WL+WMAP5+SNe+BAO, respectively, assuming a flat LCDM model with finite-mass
neutrinos. In deriving these constraints, our analysis includes the
non-Gaussian covariances of the WL correlation functions to properly take into
account significant correlations between different angles.Comment: 16 pages, 10 figures. References added, accepted for publication in
PR
Polaron cross-overs and d-wave superconductivity in Hubbard-Holstein model
We present a theoretical study of superconductivity of polarons in the
Hubbard-Holstein model. A residual kinematic interaction proportional to the
square of the polaron hopping energy between polarons and phonons provides a
pairing field for the polarons. We find that superconducting instability in the
d-wave channel is possible with small transition temperatures which is maximum
in the large to small polaron cross-over region. An s-wave instability is found
to be not possible when the effective on-site interaction between polarons is
repulsive
Evaluating the Gapless Color-Flavor Locked Phase
In neutral cold quark matter that is sufficiently dense that the strange
quark mass M_s is unimportant, all nine quarks (three colors; three flavors)
pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles
have a gap. We recently argued that the next phase down in density (as a
function of decreasing quark chemical potential mu or increasing strange quark
mass M_s) is the new ``gapless CFL'' (``gCFL'') phase in which only seven
quasiparticles have a gap, while there are gapless quasiparticles described by
two dispersion relations at three momenta. There is a continuous quantum phase
transition from CFL to gCFL quark matter at M_s^2/mu approximately equal to
2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken a
linear combination "Q-tilde" of electric and color charges, but it is a
Q-tilde-conductor with gapless Q-tilde-charged quasiparticles and a nonzero
electron density. In this paper, we evaluate the gapless CFL phase, in several
senses. We present the details underlying our earlier work which showed how
this phase arises. We display all nine quasiparticle dispersion relations in
full detail. Using a general pairing ansatz that only neglects effects that are
known to be small, we perform a comparison of the free energies of the gCFL,
CFL, 2SC, gapless 2SC, and 2SCus phases. We conclude that as density drops,
making the CFL phase less favored, the gCFL phase is the next spatially uniform
quark matter phase to occur. A mixed phase made of colored components would
have lower free energy if color were a global symmetry, but in QCD such a mixed
phase is penalized severely.Comment: 18 pages, RevTeX; Version to appear in Phys Rev D. Minor rewording,
references adde
59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O
We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water
intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting
transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample
without superconductivity. We obtained a magnetic phase diagram of T_c and the
magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR
transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase.
The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below
T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an
unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at
low temperatures increases with the increase of nu_3 though the optimal
nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity
emerges close to the magnetic instability. T_c is suppressed near the phase
boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum
critical point.Comment: 4 pages, 5 figure
Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays
We have studied the performance of two different types of front-end systems
for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels
multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64
pixels of which corresponds to the anode pixels of
H8500. One of the system is based on commercial ASIC chips in order to readout
every anode. The others are based on resistive charge divider network between
anodes to reduce readout channels. In both systems, each pixel (6mm) was
clearly resolved by flood field irradiation of Cs. We also investigated
the energy resolution of these systems and showed the performance of the
cascade connection of resistive network between some PMTs for large area
detectors.Comment: 9 pages, 6 figures, proceedings of the 7th International Workshop on
Radiation Imaging Detectors (IWORID7), submitted to NIM
Novel phase diagram of superconductor NaxCoO2-yH2O in a 75 % relative humidity
We succeeded in synthesizing the powder samples of bilayer-hydrate sodium
cobalt oxide superconductors NaxCoO2-yH2O with Tc = 0 ~ 4.6 K by systematically
changing the keeping duration in a 75 % relative humidity atmosphere after
intercalation of water molecules. From the magnetic measurements, we found that
the one-day duration sample does not show any superconductivity down to 1.8 K,
and that the samples kept for 2 ~ 7 days show superconductivity, in which Tc
increases up to 4.6 K with increasing the duration. Tc and the superconducting
volume fraction are almost invariant between 7 days and 1month duration. The
59Co NQR spectra indicate a systematic change in the local charge distribution
on the CoO2 plane with change in duration.Comment: 4 pages, 5 figures, submitted to Journal of the Physical Society of
Japa
Implication of Omega_m through the Morphological Analysis of Weak Lensing Fields
We apply the morphological descriptions of two-dimensional contour map, the
so-called Minkowski functionals (the area fraction, circumference, and Euler
characteristics), to the convergence field of the
large-scale structure reconstructed from the shear map produced by the
ray-tracing simulations. The perturbation theory of structure formation has
suggested that the non-Gaussian features on the Minkowski functionals with
respect to the threshold in the weakly nonlinear regime are induced by the
three skewness parameters of that are sensitive to the density
parameter of matter, . We show that, in the absence of noise
due to the intrinsic ellipticities of source galaxies with which the
perturbation theory results can be recovered, the accuracy of
determination is improved by using the Minkowski functionals
compared to the conventional method of using the direct measure of skewness.Comment: 4 pages, 3 figures, to appear in ApJ Lette
Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs
We have developed a position-sensitive scintillation camera with a large area
absorber for use as an advanced Compton gamma-ray camera. At first we tested
GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under
various conditions: the method of surface polishing, the concentration of Ce,
and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only
0.5 mol% Ce, and its surface polished by chemical etching as the scintillator
of our camera. We also made a 1616 cm scintillation camera which
consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the
each of which had 88 anodes with a pitch of 6 mm and coupled to
88 arrays of pixelated 613 mm GSO(Ce) scintillators.
For the readout system of the 576 anodes of the PMTs, we used chained resistors
to reduce the number of readout channels down to 48 to reduce power
consumption. The camera has a position resolution of less than 6mm and a
typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large
area of 1616 cm. %to choose the best scintillator for our project.
Furthermore we constructed a 1616 array of 313 mm
pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had
the position resolution of less than 3mm, over an area of 55 cm,
except for some of the edge pixels; the energy resolution was typically 13%
(FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM
Electronic Collective Modes and Superconductivity in Layered Conductors
A distinctive feature of layered conductors is the presence of low-energy
electronic collective modes of the conduction electrons. This affects the
dynamic screening properties of the Coulomb interaction in a layered material.
We study the consequences of the existence of these collective modes for
superconductivity. General equations for the superconducting order parameter
are derived within the strong-coupling phonon-plasmon scheme that account for
the screened Coulomb interaction. Specifically, we calculate the
superconducting critical temperature Tc taking into account the full
temperature, frequency and wave-vector dependence of the dielectric function.
We show that low-energy plasmons may contribute constructively to
superconductivity. Three classes of layered superconductors are discussed
within our model: metal-intercalated halide nitrides, layered organic materials
and high-Tc oxides. In particular, we demonstrate that the plasmon contribution
(electronic mechanism) is dominant in the first class of layered materials. The
theory shows that the description of so-called ``quasi-two-dimensional
superconductors'' cannot be reduced to a purely 2D model, as commonly assumed.
While the transport properties are strongly anisotropic, it remains essential
to take into account the screened interlayer Coulomb interaction to describe
the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure
- …