296 research outputs found

    Self-learning Multiscale Simulation for Achieving High Accuracy and High Efficiency Simultaneously

    Full text link
    We propose a new multi-scale molecular dynamics simulation method which can achieve high accuracy and high sampling efficiency simultaneously without aforehand knowledge of the coarse grained (CG) potential and test it for a biomolecular system. Based on the resolution exchange simulations between atomistic and CG replicas, a self-learning strategy is introduced to progressively improve the CG potential by an iterative way. Two tests show that, the new method can rapidly improve the CG potential and achieve efficient sampling even starting from an unrealistic CG potential. The resulting free energy agreed well with exact result and the convergence by the method was much faster than that by the replica exchange method. The method is generic and can be applied to many biological as well as non-biological problems.Comment: 14 pages, 6 figure

    Microscopic Theory of Protein Folding Rates.I: Fine Structure of the Free Energy Profile and Folding Routes from a Variational Approach

    Full text link
    A microscopic theory of the free energy barriers and folding routes for minimally frustrated proteins is presented, greatly expanding on the presentation of the variational approach outlined previously [J. J. Portman, S. Takada, P. G. Wolynes, Phys. Rev. Lett. {\bf 81}, 5237 (1998)]. We choose the λ\lambda-repressor protein as an illustrative example and focus on how the polymer chain statistics influence free energy profiles and partially ordered ensembles of structures. In particular, we investigate the role of chain stiffness on the free energy profile and folding routes. We evaluate the applicability of simpler approximations in which the conformations of the protein molecule along the folding route are restricted to have residues that are either entirely folded or unfolded in contiguous stretches. We find that the folding routes obtained from only one contiguous folded region corresponds to a chain with a much greater persistence length than appropriate for natural protein chains, while the folding route obtained from two contiguous folded regions is able to capture the relatively folded regions calculated within the variational approach. The free energy profiles obtained from the contiguous sequence approximations have larger barriers than the more microscopic variational theory which is understood as a consequence of partial ordering.Comment: 16 pages, 11 figure

    Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure

    Get PDF
    Atomic force microscopy (AFM) can visualize functional biomolecules near the physiological condition, but the observed data are limited to the surface height of specimens. Since the AFM images highly depend on the probe tip shape, for successful inference of molecular structures from the measurement, the knowledge of the probe shape is required, but is often missing. Here, we developed a method of the rigid-body fitting to AFM images, which simultaneously finds the shape of the probe tip and the placement of the molecular structure via an exhaustive search. First, we examined four similarity scores via twin-experiments for four test proteins, finding that the cosine similarity score generally worked best, whereas the pixel-RMSD and the correlation coefficient were also useful. We then applied the method to two experimental high-speed-AFM images inferring the probe shape and the molecular placement. The results suggest that the appropriate similarity score can differ between target systems. For an actin filament image, the cosine similarity apparently worked best. For an image of the flagellar protein FlhAC, we found the correlation coefficient gave better results. This difference may partly be attributed to the flexibility in the target molecule, ignored in the rigid-body fitting. The inferred tip shape and placement results can be further refined by other methods, such as the flexible fitting molecular dynamics simulations. The developed software is publicly available

    Molecular dynamics simulation of proton-transfer coupled rotations in ATP synthase FO motor

    Get PDF
    The FO motor in FOF1 ATP synthase rotates its rotor driven by the proton motive force. While earlier studies elucidated basic mechanisms therein, recent advances in high-resolution cryo-electron microscopy enabled to investigate proton-transfer coupled FO rotary dynamics at structural details. Here, taking a hybrid Monte Carlo/molecular dynamics simulation method, we studied reversible dynamics of a yeast mitochondrial FO. We obtained the 36°-stepwise rotations of FO per one proton transfer in the ATP synthesis mode and the proton pumping in the ATP hydrolysis mode. In both modes, the most prominent path alternatively sampled states with two and three deprotonated glutamates in c-ring, by which the c-ring rotates one step. The free energy transduction efficiency in the model FO motor reached ~ 90% in optimal conditions. Moreover, mutations in key glutamate and a highly conserved arginine increased proton leakage and markedly decreased the coupling, in harmony with previous experiments. This study provides a simple framework of simulations for chemical-reaction coupled molecular dynamics calling for further studies in ATP synthase and others

    Histone chaperone Nap1 dismantles an H2A/H2B dimer from a partially unwrapped nucleosome

    Get PDF
    DNA translocases, such as RNA polymerases, inevitably collide with nucleosomes on eukaryotic chromatin. Upon these collisions, histone chaperones are suggested to facilitate nucleosome disassembly and re-assembly. In this study, by performing in vitro transcription assays and molecular simulations, we found that partial unwrapping of a nucleosome by an RNA polymerase dramatically facilitates an H2A/H2B dimer dismantling from the nucleosome by Nucleosome Assembly Protein 1 (Nap1). Furthermore, the results uncovered molecular mechanisms of Nap1 functions in which the highly acidic C-terminal flexible tails of Nap1 contribute to the H2A/H2B binding by associating with the binding interface buried and not accessible to Nap1 globular domains, supporting the penetrating fuzzy binding mechanism seemingly shared across various histone chaperones. These findings have broad implications for the mechanisms by which histone chaperones process nucleosomes upon collisions with translocases in transcription, histone recycling and nucleosomal DNA repair

    Microscopic Theory of Protein Folding Rates.II: Local Reaction Coordinates and Chain Dynamics

    Full text link
    The motion involved in barrier crossing for protein folding are investigated in terms of the chain dynamics of the polymer backbone, completing the microscopic description of protein folding presented in the previous paper. Local reaction coordinates are identified as collective growth modes of the unstable fluctuations about the saddle-points in the free energy surface. The description of the chain dynamics incorporates internal friction (independent of the solvent viscosity) arising from the elementary isomerizations of the backbone dihedral angles. We find that the folding rate depends linearly on the solvent friction for high viscosity, but saturates at low viscosity because of internal friction. For λ\lambda-repressor, the calculated folding rate prefactor, along with the free energy barrier from the variational theory, gives a folding rate that agrees well with the experimentally determined rate under highly stabilizing conditions, but the theory predicts too large a folding rate at the transition midpoint. This discrepancy obtained using a fairly complete quantitative theory inspires a new set of questions about chain dynamics, specifically detailed motions in individual contact formation.Comment: 18 pages, 8 figure

    The kinetic landscape of nucleosome assembly: A coarse-grained molecular dynamics study

    Get PDF
    The organization of nucleosomes along the Eukaryotic genome is maintained over time despite disruptive events such as replication. During this complex process, histones and DNA can form a variety of non-canonical nucleosome conformations, but their precise molecular details and roles during nucleosome assembly remain unclear. In this study, employing coarse-grained molecular dynamics simulations and Markov state modeling, we characterized the complete kinetics of nucleosome assembly. On the nucleosome-positioning 601 DNA sequence, we observe a rich transition network among various canonical and non-canonical tetrasome, hexasome, and nucleosome conformations. A low salt environment makes nucleosomes stable, but the kinetic landscape becomes more rugged, so that the system is more likely to be trapped in off-pathway partially assembled intermediates. Finally, we find that the co-operativity between DNA bending and histone association enables positioning sequence motifs to direct the assembly process, with potential implications for the dynamic organization of nucleosomes on real genomic sequences

    The lane-switch mechanism for nucleosome repositioning by DNA translocase

    Get PDF
    Translocases such as DNA/RNA polymerases, replicative helicases, and exonucleases are involved in eukaryotic DNA transcription, replication, and repair. Since eukaryotic genomic DNA wraps around histone octamers and forms nucleosomes, translocases inevitably encounter nucleosomes. A previous study has shown that a nucleosome repositions downstream when a translocase collides with the nucleosome. However, the molecular mechanism of the downstream repositioning remains unclear. In this study, we identified the lane-switch mechanism for downstream repositioning with molecular dynamics simulations and validated it with restriction enzyme digestion assays and deep sequencing assays. In this mechanism, after a translocase unwraps nucleosomal DNA up to the site proximal to the dyad, the remaining wrapped DNA switches its binding lane to that vacated by the unwrapping, and the downstream DNA rewraps, completing downstream repositioning. This mechanism may have broad implications for transcription through nucleosomes, histone recycling, and nucleosome remodeling

    Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    Get PDF
    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures
    corecore