12 research outputs found

    Involvement of Fyn tyrosine kinase in actin stress fiber formation in fibroblasts

    Get PDF
    AbstractLysophosphatidic acid (LPA) and sphingosylphosphorylcholine (SPC) activated Fyn tyrosine kinase and induced stress fiber formation, which was blocked by pharmacological inhibition of Fyn, gene silencing of Fyn, or dominant negative Fyn. Overexpressed constitutively active Fyn localized at both ends of F-actin bundles and triggered stress fiber formation, only the latter of which was abolished by Rho-kinase (ROCK) inhibition. SPC, but not LPA, induced filopodia-like protrusion formation, which was not mediated by Fyn and ROCK. Thus, Fyn appears to act downstream of LPA and SPC to specifically stimulate stress fiber formation mediated by ROCK in fibroblasts

    Neural effects of acute stress on appetite: A magnetoencephalography study.

    No full text
    Stress is prevalent in modern society and can affect human health through its effects on appetite. Therefore, in the present study, we aimed to clarify the neural mechanisms by which acute stress affects appetite in healthy, non-obese males during fasting. In total, 22 volunteers participated in two experiments (stress and control conditions) on different days. The participants performed a stress-inducing speech-and-mental-arithmetic task under both conditions, and then viewed images of food, during which, their neural activity was recorded using magnetoencephalography (MEG). In the stress condition, the participants were told to perform the speech-and-mental-arithmetic task again subsequently to viewing the food images; however, another speech-and-mental-arithmetic task was not performed actually. Subjective levels of stress and appetite were then assessed using a visual analog scale. Electrocardiography was performed to assess the index of heart rate variability reflecting sympathetic nerve activity. The findings showed that subjective levels of stress and sympathetic nerve activity were increased in the MEG session in the stress condition, whereas appetite gradually increased in the MEG session only in the control condition. The decrease in alpha band power in the frontal pole caused by viewing the food images was greater in the stress condition than in the control condition. These findings suggest that acute stress can suppress the increase of appetite, and this suppression is associated with the frontal pole. The results of the present study may provide valuable clues to gain a further understanding of the neural mechanisms by which acute stress affects appetite. However, since the stress examined in the present study was related to the expectation of forthcoming stressful event, our present findings may not be generalized to the stress unrelated to the expectation of forthcoming stressful event
    corecore