9 research outputs found

    Differential distribution of calcitonin gene-related peptide (CGRP) and CGRP receptor components (CLR and RAMP1) in the human trigeminal ganglion.

    Get PDF
    Calcitonin gene related peptide (CGRP) has a key role in migraine and recently CGRP receptor antagonists have demonstrated clinical efficacy in the treatment of migraine. However, it remains unclear where the CGRP receptors are located within the CGRP signaling pathway in the human trigeminal system and hence the potential antagonist sites of action remain unknown. Therefore we designed a study to evaluate the localization of CGRP and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein (RAMP) 1 in the human trigeminal ganglion using immunohistochemistry and compare with that of rat. Antibodies against purified CLR and RAMP1 proteins were produced and characterized for this study. Trigeminal ganglia were obtained at autopsy from adult subjects and sections from rat trigeminal ganglia were used to compare the immunostaining pattern. The number of cells expressing CGRP, CLR and RAMP1, respectively, were counted. In addition, the glial cells of trigeminal ganglion, particularly the satellite glial cell, were studied to understand a possible relation. We observed immunoreactivity for CGRP, CLR and RAMP1, in the human trigeminal ganglion: 49% of the neurons expressed CGRP, 37% CLR and 36% RAMP1. Co-localization of CGRP and the receptor components was rarely found. There were no CGRP immunoreactions in the glial cells; however some of the glial cells displayed CLR and RAMP1 immunoreactivity. Similar results were observed in rat trigeminal ganglia. We report that human and rat trigeminal neurons store CGRP, CLR and RAMP1, however, CGRP and CLR/RAMP1 do not co-localize regularly but are found in separate neurons. Glial cells also contain the CGRP receptor components but not CGRP. Our results indicate, for the first time, the possibility of CGRP signaling in the human trigeminal ganglion involving both neurons and satellite glial cells. This suggests a possible site of action for the novel CGRP receptor antagonists in migraine therapy

    Capsaicin receptor immunoreactivity in the human trigeminal ganglion.

    No full text
    The cloned capsaicin receptor, also known as vanilloid receptor subtype 1 (VR1) receptor, has been demonstrated to be an integral membrane protein with homology to a family of putative store-operated calcium channels. The VR1 receptor is activated not only by capsaicin but also by noxious heat and protons, and therefore it is suggested as a molecular integrator of chemical and physical stimuli that elicit pain. In the present study, indirect immunofluorescence detected a small number of neurons that are VR1 receptor immunoreactive (ir) (171 versus 1038 or 16% of all neuronal cell bodies) in the human trigeminal ganglion (TG). In addition, RT-PCR confirmed the presence of VR1 mRNA in the human TG. It has been hypothesized that TG neuronal cell bodies are the source of capsaicin-stimulated release of calcitonin gene-related peptide (CGRP), and hence co-localization experiments were performed. Around 10% of the VR1 receptor-ir is expressed on neurons that contain CGRP-ir (ten among 74) in the human TG, indicating that capsaicin may act through the VR1 receptor to modulate the release of CGRP and in turn to modulate pain. We observed that 8% of the VR1 receptor-ir neuronal cell bodies contain substance P-ir and 5% nitric oxide synthase. Capsaicin can release nitric oxide, CGRP and substance P from sensory nerves and contribute to central sensitization

    Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion - Interaction with the sensory system.

    No full text
    Clinical studies have suggested a link between the sensory trigeminal system and the parasympathetic ganglia. Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide which plays an important role in vasodilatation and pain transmission in craniocervical structures. The present study was designed to examine if CGRP and CGRP receptor components are present in the human sphenopalatine ganglion (SPG) in order to reveal an interaction between the sensory and parasympathetic systems. Indirect immunofluorescence technique was used for immunohistochemical demonstration of CGRP, the calcitonin receptor-like receptor (CLR) and the receptor activity modifying protein 1 (RAMP1) in human and rat SPG. Cryostat sections were examined and images were obtained using a light- and epifluorescence microscope coupled to a camera to visualize co-labeling by superimposing the digital images. In addition, Western blot technique was used to demonstrate the existence of CGRP receptor components in rat SPG. CGRP immunoreactive fibers were frequently found intraganglionic in the SPG in the vicinity of neurons. CLR immunoreactivity was observed in satellite glial cells (SGCs) as well as in nerve fibers, but not in neurons. RAMP1 immunoreactivity was localized in many neurons and SGCs. Thus, the two CGRP receptor components together were found in the SGCs. In addition, Western blot revealed the presence of RAMP1 and CLR in rat SPG. Our results suggest a possible sensory influence in the parasympathetic cranial ganglia. The sensory CGRP-containing fibers probably originate in the trigeminal ganglion, project to the SPG and act on CGRP receptors on SGCs

    Enhanced expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture

    No full text
    The sensory innervation of intracranial vessels originates in the trigeminal ganglion with calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase activating peptide (PACAP) as frequent neuronal messengers. The present study was designed to study the expression of these neuropeptides (a) in primary culture of adult rat trigeminal ganglion neuronal cells and (b) in organ culture of sections of the trigeminal ganglion. In cell culture, axons grow in the peripheral direction for up to 48 h. Immunocytochemistry revealed that the cell bodies showed increased expression of CGRP at 24 h and SP at 24-48 h (p 0.05), but at 48 h (p0.05). In conclusion, neurons of rat trigeminal ganglia alter their expression of neuropeptides during cell and organ culture differently, but it is mainly the CGRP system that is up-regulated. We have compared two methods for future studies of underlying molecular mechanisms responsible for regulation of neuropeptide expression in the trigeminal system. (C) 2007 Elsevier B.V. All rights reserved

    Nod-like receptors in head and neck squamous cell carcinoma

    No full text
    Conclusion: The capability of Nod1 to recognize bacteria along with its altered expression and ability to cause an immunological response in head and neck cancer suggest a novel pathway for bacteria to interfere with ongoing cancer inflammation. Objective: Nucleotide oligomerization domain (Nod)-like receptors (NLRs) comprise a recently discovered family of pattern-recognition receptors. In addition to their protective function against infections, accumulating evidence suggests a role for these receptors in various diseases, including cancer. The present study was designed to explore the presence of NLRs in head and neck squamous cell carcinoma, and to determine if these cells have the ability to respond immunologically to ligand stimulation. Methods: The pharyngeal squamous cell carcinoma cell lines Detroit-562 and FaDu were used as a model for head and neck cancer, and compared to healthy primary human nasal epithelial cells. Analyses were performed using immuno-histochemistry, real-time RT-PCR, Luminex Multiplex Immunoassay, ELISA, and flow cytometry. Results: The expression profile of NLRs in head and neck cancer cells differed from that seen in healthy epithelial cells. Further, Nod1 stimulation induced an immunological response in tumor cells that differed from the response in normal epithelial cells, especially regarding the expression of beta-defensin 2, granulocyte monocyte colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), intercellular adhesion molecule-1 (ICAM-1), and cell survival
    corecore