43 research outputs found

    Real-Time PCR-Based Analysis of the Human Bile MicroRNAome Identifies miR-9 as a Potential Diagnostic Biomarker for Biliary Tract Cancer

    Get PDF
    Biliary tract cancer (BTC) is often difficult to diagnose definitively, even through histological examination. MicroRNAs (miRNAs) regulate a variety of physiological processes. In recent years, it has been suggested that profiles for circulating miRNAs, as well as those for tissue miRNAs, have the potential to be used as diagnostic biomarkers for cancer. The aim of this study was to confirm the existence of miRNAs in human bile and to assess their potential as clinical biomarkers for BTC. We sampled bile from patients who underwent biliary drainage for biliary diseases such as BTC and choledocholithiasis. PCR-based miRNA detection and miRNA cloning were performed to identify bile miRNAs. Using high-throughput real-time PCR-based miRNA microarrays, the expression profiles of 667 miRNAs were compared in patients with malignant disease (n = 9) and age-matched patients with the benign disease choledocholithiasis (n = 9). We subsequently characterized bile miRNAs in terms of stability and localization. Through cloning and using PCR methods, we confirmed that miRNAs exist in bile. Differential analysis of bile miRNAs demonstrated that 10 of the 667 miRNAs were significantly more highly expressed in the malignant group than in the benign group at P<0.0005. Setting the specificity threshold to 100% showed that some miRNAs (miR-9, miR-302c*, miR-199a-3p and miR-222*) had a sensitivity level of 88.9%, and receiver-operating characteristic analysis demonstrated that miR-9 and miR-145* could be useful diagnostic markers for BTC. Moreover, we verified the long-term stability of miRNAs in bile, a characteristic that makes them suitable for diagnostic use in clinical settings. We also confirmed that bile miRNAs are localized to the malignant/benign biliary epithelia. These findings suggest that bile miRNAs could be informative biomarkers for hepatobiliary disease and that some miRNAs, particularly miR-9, may be helpful in the diagnosis and clinical management of BTC

    ストレプトゾトシン誘導性糖尿病ラットにおける腎Cyp24a1遺伝子発現上昇と血漿1,25-ジヒドロキシビタミンD濃度低下との関連

    Get PDF
    Decreases in plasma vitamin D concentrations have been reported in diabetes, although the mechanism involved in this decrease is unclear. Here, we investigated the association between Cyp24a1, a vitamin D catabolic enzyme, and abnormalities in vitamin D metabolism in streptozotocin-induced diabetes rats, an animal model of type 1 diabetes. Plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels were significantly lower in streptozotocin-induced diabetes rats and renal Cyp24a1 mRNA expression levels were increased. Western blotting analysis of streptozotocin-induced diabetes rats kidney tissues with anti-CYP24A1 antibody showed a strong signal around 40 kDa, which differs from the predicted 50–55 kDa molecular weight for full-length Cyp24a1 and could represent the Cyp24a1-splicing variant that lacks exons 1 and 2. We observed high levels of renal Cyp24a1-splicing variant mRNA expression in streptozotocin-induced diabetes rats. We also confirmed transcriptional up-regulation of endogenous Cyp24a1 mRNA expression through glucocorticoid receptors by glucocorticoid in opossum kidney proximal cells. Taken together, our results indicated that high Cyp24a1 expression levels may play a role in the decrease of plasma 1,25(OH)2D levels in streptozotocin-induced diabetes rats. High plasma corticosterone levels in diabetes may affect transcriptional regulation to promote increases in Cyp24a1 expression

    年齢に応じた血中活性型ビタミンD濃度, 腎Cyp27b1およびCyp24a1発現に対する食餌性リン反応性の変化には腎α-Klotho遺伝子発現が関連する

    Get PDF
    In this study, we investigated the relationship between age-related changes in renal α-Klotho gene expression, vitamin D metabolism and the responsiveness of dietary phosphate in 1, 2 and 13 month-old mice fed a high phosphate (phosphate 1.2%) diet or low phosphate (phosphate 0.02%) diet for 5 days. We found that 1,25-dihydroxyvitamin D levels in plasma were significantly lower in the high phosphate group than the low phosphate group for 1 and 2 month-old mice, but not 13 month-old mice. In addition, in the high phosphate group plasma 1,25-dihydroxyvitamin D levels were decreased in 2 month-old mice relative to 1 month-old mice, but 13 month-old mice had higher levels than 2 month-old mice. In fact, plasma 1,25-dihydroxyvitamin D levels showed a significant correlation with vitamin D metabolism gene Cyp27b1 and Cyp24a1 mRNA expression in the high phosphate group. Interestingly, renal α-Klotho mRNA and protein levels were significant change with age. Furthermore, α-Klotho mRNA expression showed a significant negative correlation with plasma 1,25-dihydroxyvitamin D levels in the high phosphate group. Our results suggest that age-related alterations in renal α-Klotho expression could affect the responsiveness of dietary phosphate to vitamin D metabolism

    ステロール応答領域結合タンパク質1は腎近位尿細管細胞において25-水酸化ビタミンD3 24-水酸化酵素遺伝子の転写を活性化する

    Get PDF
    The physiological activity of the steroid derived hormone vitamin D is regulated by several enzymatic steps. Both 25-hydroxy vitamin D3 1a-hydroxylase (CYP27B1) and 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) modulate blood levels of 1,25-dihydroxyvitamin D3, an activated form of vitamin D. We previously demonstrated that CYP27B1 expression was trans-activated by sterol regulatory element binding protein 1 (SREBP1), although whether SREBP1 also regulates CYP24A1 transcription was unclear. Here we investigated the ability of SREBP1 to affect CYP24A1 transcription. In a luciferase reporter assay, mouse and human CYP24A1 promoter activity was strongly activated by SREBP1 in opossum kidney proximal tubular cells (OK-P). Three putative SREs (pSREs) were found in the mouse Cyp24a1 gene promoter and the SREBP1 protein showed specific binding to the pSRE1 element in EMSAs. Site-directed mutagenesis of the pSRE1 element strongly decreased SREBP1-mediated Cyp24a1 gene transcription. Moreover, siRNA-mediated SREBP1 knock-down repressed CYP24A1 expression in human renal proximal tubular epithelial cells (HKC-8). In animal studies, mice given various doses of thyroid hormone (T3) showed dose-dependent reductions in renal Srebp1c and Cyp24a1 mRNA levels. Taken together, our results suggest that SREBP1 trans-activates CYP24A1 expression through SREBP binding elements present in the promoter

    Treatment results of two-stage operation for the patients with esophageal cancer concomitant with liver dysfunction

    Get PDF
    Purpose : The aim of this study was to clarify the usefulness of two-stage operation for the patients with esophageal cancer who have liver dysfunction. Methods : Eight patients with esophageal cancer concomitant with liver dysfunction who underwent two-stage operation were analyzed. The patients initially underwent an esophagectomy, a cervical esophagostomy and a tube jejunostomy, and reconstruction with gastric tube was performed after the recovery of patients’ condition. Results : The average time of the 1st and 2nd stage operation was 410.0 min and 438.9 min, respectively. The average amount of blood loss in the 1st and 2nd stage operation was 433.5 ml and 1556.8 ml, respectively. The average duration between the operations was 29.8 days. The antesternal route was selected for 5 patients (62.5%) and the retrosternal route was for 3 patients (37.5%). In the 1st stage operation, no postoperative complications were observed, while, complications developed in 5 (62.5%) patients, including 4 anastomotic leakages, after the 2nd stage operation. Pneumonia was not observed through two-stage operation. No in-hospital death was experienced. Conclusion : A two-stage operation might prevent the occurrence of critical postoperative complications for the patients with esophageal cancer concomitant with liver dysfunction

    Sequencing and Bioinformatics-Based Analyses of the microRNA Transcriptome in Hepatitis B–Related Hepatocellular Carcinoma

    Get PDF
    MicroRNAs (miRNAs) participate in crucial biological processes, and it is now evident that miRNA alterations are involved in the progression of human cancers. Recent studies on miRNA profiling performed with cloning suggest that sequencing is useful for the detection of novel miRNAs, modifications, and precise compositions and that miRNA expression levels calculated by clone count are reproducible. Here we focus on sequencing of miRNA to obtain a comprehensive profile and characterization of these transcriptomes as they relate to human liver. Sequencing using 454 sequencing and conventional cloning from 22 pair of HCC and adjacent normal liver (ANL) and 3 HCC cell lines identified reliable reads of more than 314000 miRNAs from HCC and more than 268000 from ANL for registered human miRNAs. Computational bioinformatics identified 7 novel miRNAs with high conservation, 15 novel opposite miRNAs, and 3 novel antisense miRNAs. Moreover sequencing can detect miRNA modifications including adenosine-to-inosine editing in miR-376 families. Expression profiling using clone count analysis was used to identify miRNAs that are expressed aberrantly in liver cancer including miR-122, miR-21, and miR-34a. Furthermore, sequencing-based miRNA clustering, but not individual miRNA, detects high risk patients who have high potentials for early tumor recurrence after liver surgery (P = 0.006), and which is the only significant variable among pathological and clinical and variables (P = 0,022). We believe that the combination of sequencing and bioinformatics will accelerate the discovery of novel miRNAs and biomarkers involved in human liver cancer
    corecore