2,704 research outputs found
Calibration System with Cryogenically-Cooled Loads for CMB Polarization Detectors
We present a novel system to calibrate millimeter-wave polarimeters for CMB
polarization measurements. This technique is an extension of the conventional
metal mirror rotation approach, however it employs cryogenically-cooled
blackbody absorbers. The primary advantage of this system is that it can
generate a slightly polarized signal ( mK) in the laboratory; this is
at a similar level to that measured by ground-based CMB polarization
experiments observing a 10 K sky. It is important to reproduce the
observing condition in the laboratry for reliable characterization of
polarimeters before deployment. In this paper, we present the design and
principle of the system, and demonstrate its use with a coherent-type
polarimeter used for an actual CMB polarization experiment. This technique can
also be applied to incoherent-type polarimeters and it is very promising for
the next-generation CMB polarization experiments.Comment: 7 pages, 9 figures Submitted to RS
Innovative Demodulation Scheme for Coherent Detectors in CMB Experiments
We propose an innovative demodulation scheme for coherent detectors used in
cosmic microwave background polarization experiments. Removal of non-white
noise, e.g., narrow-band noise, in detectors is one of the key requirements for
the experiments. A combination of modulation and demodulation is used to
extract polarization signals as well as to suppress such noise. Traditional
demodulation, which is based on the two- point numerical differentiation, works
as a first-order high pass filter for the noise. The proposed demodulation is
based on the three-point numerical differentiation. It works as a second-order
high pass filter. By using a real detector, we confirmed significant
improvements of suppression power for the narrow-band noise. We also found
improvement of the noise floor.Comment: 3 pages, 4 figure
Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance
It is proposed that the presence of a tilted and anisotropic Dirac cone can
be verified using the interlayer magnetoresistance in the layered Dirac fermion
system, which is realized in quasi-two-dimensional organic compound
\alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic
Landau level wave functions and assuming local tunneling of electrons. It is
shown that the resistivity takes the maximum in the direction of the tilt if
anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is
described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.
Tilted-Cone Induced Cusps and Nonmonotonic Structures in Dynamical Polarization Function of Massless Dirac Fermions
The polarization function of electrons with the tilted Dirac cone found in
organic conductors is studied using the tilted Weyl equation. The dynamical
property is explored based on the analytical treatment of the particle-hole
excitation. It is shown that the polarization function as the function of both
the frequency and the momentum exhibits cusps and nonmonotonic structures. The
polarization function depends not only on the magnitude but also the direction
of the external momentum. These properties are characteristic of the tilted
Dirac cone, and are contrast to the isotropic case of grapheme. Further, the
results are applied to calculate the optical conductivity, the plasma frequency
and the screening of Coulomb interaction, which are also strongly influenced by
the tilted cone.Comment: 28 pages, 12 figures, to be published in Journal of the Physical
Society of Japan Vol. 79 (2010) No. 1
Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels
The relativistic Landau levels in the layered organic material
alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are
sensitive to the tilt of the Dirac cones, which, as in the case of graphene,
determine the low-energy electronic properties under appropriate pressure. We
show that an applied inplane electric field, which happens to be in competition
with the tilt of the cones, lifts the twofold valley degeneracy due to a
different level spacing. The scenario may be tested in infrared transmission
spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP
- …