2,704 research outputs found

    Calibration System with Cryogenically-Cooled Loads for CMB Polarization Detectors

    Full text link
    We present a novel system to calibrate millimeter-wave polarimeters for CMB polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (100\sim100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a \sim 10 K sky. It is important to reproduce the observing condition in the laboratry for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system, and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.Comment: 7 pages, 9 figures Submitted to RS

    Innovative Demodulation Scheme for Coherent Detectors in CMB Experiments

    Full text link
    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two- point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.Comment: 3 pages, 4 figure

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.

    Tilted-Cone Induced Cusps and Nonmonotonic Structures in Dynamical Polarization Function of Massless Dirac Fermions

    Full text link
    The polarization function of electrons with the tilted Dirac cone found in organic conductors is studied using the tilted Weyl equation. The dynamical property is explored based on the analytical treatment of the particle-hole excitation. It is shown that the polarization function as the function of both the frequency and the momentum exhibits cusps and nonmonotonic structures. The polarization function depends not only on the magnitude but also the direction of the external momentum. These properties are characteristic of the tilted Dirac cone, and are contrast to the isotropic case of grapheme. Further, the results are applied to calculate the optical conductivity, the plasma frequency and the screening of Coulomb interaction, which are also strongly influenced by the tilted cone.Comment: 28 pages, 12 figures, to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels

    Full text link
    The relativistic Landau levels in the layered organic material alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are sensitive to the tilt of the Dirac cones, which, as in the case of graphene, determine the low-energy electronic properties under appropriate pressure. We show that an applied inplane electric field, which happens to be in competition with the tilt of the cones, lifts the twofold valley degeneracy due to a different level spacing. The scenario may be tested in infrared transmission spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP
    corecore