5,133 research outputs found
Robustly Unstable Eigenmodes of the Magnetoshearing Instability in Accretion Disk
The stability of nonaxisymmetric perturbations in differentially rotating
astrophysical accretion disks is analyzed by fully incorporating the properties
of shear flows. We verify the presence of discrete unstable eigenmodes with
complex and pure imaginary eigenvalues, without any artificial disk edge
boundaries, unlike Ogilvie & Pringle(1996)'s claim. By developing the
mathematical theory of a non-self-adjoint system, we investigate the nonlocal
behavior of eigenmodes in the vicinity of Alfven singularities at
omega_D=omega_A, where omega_D is the Doppler-shifted wave frequency and
omega_A=k_// v_A is the Alfven frequency. The structure of the spectrum of
discrete eigenmodes is discussed and the magnetic field and wavenumber
dependence of the growth rate are obtained. Exponentially growing modes are
present even in a region where the local dispersion relation theory claims to
have stable eigenvalues. The velocity field created by an eigenmode is
obtained, which explains the anomalous angular momentum transport in the
nonlinear stage of this stability.Comment: 11pages, 11figures, to be published in ApJ. For associated eps files,
see http://dino.ph.utexas.edu/~knoguchi
Molecular evolution of the sheep prion protein gene
Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases characterized by aggregates of modified forms of the prion protein (PrP) in the central nervous system. Well known examples include variant Creutzfeldt-Jakob Disease (vCJD) in humans, BSE in cattle, chronic wasting disease in deer and scrapie in sheep and goats. In humans, sheep and deer, disease susceptibility is determined by host genotype at the prion protein gene (PRNP). Here I examine the molecular evolution of PRNP in ruminants and show that variation in sheep appears to have been maintained by balancing selection, a profoundly different process from that seen in other ruminants. Scrapie eradication programs such as those recently implemented in the UK, USA and elsewhere are based on the assumption that PRNP is under positive selection in response to scrapie. If, as these data suggest, that assumption is wrong, eradication programs will disrupt this balancing selection, and may have a negative impact on the fitness or scrapie resistance of national flocks
Spontaneous transition to a fast 3D turbulent reconnection regime
We show how the conversion of magnetic field energy via magnetic reconnection
can progress in a fully three-dimensional, fast, volume-filling regime. An
initial configuration representative of many laboratory, space and
astrophysical plasmas spontaneously evolves from the well-known regime of slow,
resistive reconnection to a new regime that allows to explain the rates of
energy transfer observed in jets emitted from accretion disks, in stellar/solar
flare processes as well as in laboratory plasmas. This process does not require
any pre-existing turbulence seed which often is not observed in the host
systems prior to the onset of the energy conversion. The dynamics critically
depends on the interplay of perturbations developing along the magnetic field
lines and across them, a process possible only in three-dimensions. The
simulations presented here are the first able to show this transition in a
fully three-dimensional configuration.Comment: 6 pages, 6 figure
Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt
The electric conductivity which reveals the zero gap semiconducting (ZGS)
state has been investigated as the function of temperature and life time
in order to understand the ZGS state in quarter-filled
-(BEDT-TTF)I salt with four sites in the unit cell. By treating
as a parameter and making use of the one-loop approximation, it is found
that the conductivity is proportional to and for
and independent of and for . Further the
conductivity being independent of in the ZGS state is examined in terms of
Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
Gene-history correlation and population structure
Correlation of gene histories in the human genome determines the patterns of
genetic variation (haplotype structure) and is crucial to understanding genetic
factors in common diseases. We derive closed analytical expressions for the
correlation of gene histories in established demographic models for genetic
evolution and show how to extend the analysis to more realistic (but more
complicated) models of demographic structure. We identify two contributions to
the correlation of gene histories in divergent populations: linkage
disequilibrium, and differences in the demographic history of individuals in
the sample. These two factors contribute to correlations at different length
scales: the former at small, and the latter at large scales. We show that
recent mixing events in divergent populations limit the range of correlations
and compare our findings to empirical results on the correlation of gene
histories in the human genome.Comment: Revised and extended version: 26 pages, 5 figures, 1 tabl
The Energy of a Plasma in the Classical Limit
When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and
d_{T}, the distance of closest approach of thermal electrons, a classical
analysis of the energy of a plasma can be made. In all the classical analysis
made until now, it was assumed that the frequency of the fluctuations \omega <<
T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the
energy of a plasma, allowing the frequency of the fluctuations to be arbitrary.
We find that the energy density is appreciably larger than previously thought
for many interesting plasmas, such as the plasma of the Universe before the
recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let
- …