100 research outputs found
Coexistence of Continuous Variable Quantum Key Distribution and 7 12.5 Gbit/s Classical Channels
We study coexistence of CV-QKD and 7 classical 12.5 Gbit/s on-off keying
channels in WDM transmission over the C-band. We demonstrate key generation
with a distilled secret key rate between 20 to 50 kbit/s in experiments running
continuously over 24 hours.Comment: 2018 IEEE Summer Topicals, paper MD4.
Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses
Quantum key distribution (QKD) allows two distant parties to share secret
keys with the proven security even in the presence of an eavesdropper with
unbounded computational power. Recently, GHz-clock decoy QKD systems have been
realized by employing ultrafast optical communication devices. However,
security loopholes of high-speed systems have not been fully explored yet. Here
we point out a security loophole at the transmitter of the GHz-clock QKD, which
is a common problem in high-speed QKD systems using practical band-width
limited devices. We experimentally observe the inter-pulse intensity
correlation and modulation-pattern dependent intensity deviation in a practical
high-speed QKD system. Such correlation violates the assumption of most
security theories. We also provide its countermeasure which does not require
significant changes of hardware and can generate keys secure over 100 km fiber
transmission. Our countermeasure is simple, effective and applicable to wide
range of high-speed QKD systems, and thus paves the way to realize ultrafast
and security-certified commercial QKD systems
A novel salt- and organic solvent-tolerant phosphite dehydrogenase from Cyanothece sp. ATCC 51142
Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0–10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4+. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent
Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis211
GM2/GD2 synthase gene knockout mice lack all complex gangliosides, which are abundantly expressed in the nervous systems of vertebrates. In turn, they have increased precursor structures GM3 and GD3, probably replacing the roles of the depleted complex gangliosides. In this study, we found that 9-O-acetyl GD3 is also highly expressed as one of the major glycosphingolipids accumulating in the nervous tissues of the mutant mice. The identity of the novel component was confirmed by neuraminidase treatment, thin layer chromatography-immunostaining, two-dimensional thin layer chromatography with base treatment, and mass spectrometry. All candidate factors reported to be possible inducer of 9-O- acetylation, such as bitamine D binding protein, acetyl CoA transporter, or O-acetyl ganglioside synthase were not up-regulated. Tis21 which had been reported to be a 9-O-acetylation inducer was partially down-regulated in the null mutants, suggesting that Tis21 is not involved in the induction of 9-O-acetyl-GD3 and that accumulated high amount of GD3 might be the main factor for the dramatic increase of 9-O-acetyl GD3. The ability to acetylate exogenously added GD3 in the normal mouse astrocytes was examined, showing that the wild-type brain might be able to synthesize very low levels of 9-O-acetyl GD3. Increased 9-O-acetyl GD3, in addition to GM3 and GD3, may play an important role in the compensation for deleted complex gangliosides in the mutant mice
Multilevel metallization based on Al CVD
科研費報告書収録論文(課題番号:08555073・基盤研究(A)(2)・H8~H10/研究代表者:坪内, 和夫/超LSI多層配線A1CVD装置の開発
Feasibility of Intraspecific Mix Cropping in Japan-Trials with Soybean Lines in Kawatabi Field Center
Young Researchers Sessio
Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength-division multiplexing clock synchronization
We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission
at 625 MHz clock rate through a 97 km field-installed fiber using practical
clock synchronization based on wavelength-division multiplexing (WDM). We
succeeded in over-one-hour stable key generation at a high sifted key rate of
2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure
key rate was estimated to be 0.78-0.82 kbps from the transmission data with the
decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.Comment: 7 pages, 3 figures, v2 : We added a comment on the significance of
our work, some minor corrections, and reference
A community intervention trial of multimodal suicide prevention program in Japan: A Novel multimodal Community Intervention program to prevent suicide and suicide attempt in Japan, NOCOMIT-J
<p>Abstract</p> <p>Background</p> <p>To respond to the rapid surge in the incidence of suicide in Japan, which appears to be an ongoing trend, the Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP) have launched a multimodal community-based suicide prevention program, NOCOMIT-J. The primary aim of this study is to examine whether NOCOMIT-J is effective in reducing suicidal behavior in the community.</p> <p>Methods/DesignThis study is a community intervention trial involving seven intervention regions with accompanying control regions, all with populations of statistically sufficient size. The program focuses on building social support networks in the public health system for suicide prevention and mental health promotion, intending to reinforce human relationships in the community. The intervention program components includes a primary prevention measures of awareness campaign for the public and key personnel, secondary prevention measures for screening of, and assisting, high-risk individuals, after-care for individuals bereaved by suicide, and other measures. The intervention started in July 2006, and will continue for 3.5 years. Participants are Japanese and foreign residents living in the intervention and control regions (a total of population of 2,120,000 individuals).</p> <p>Discussion</p> <p>The present study is designed to evaluate the effectiveness of the community-based suicide prevention program in the seven participating areas.</p> <p>Trial registration</p> <p>UMIN Clinical Trials Registry (UMIN-CTR) UMIN000000460.</p
Molecular Evolutionary Analysis of the Influenza A(H1N1)pdm, May–September, 2009: Temporal and Spatial Spreading Profile of the Viruses in Japan
BACKGROUND: In March 2009, pandemic influenza A(H1N1) (A(H1N1)pdm) emerged in Mexico and the United States. In Japan, since the first outbreak of A(H1N1)pdm in Osaka and Hyogo Prefectures occurred in the middle of May 2009, the virus had spread over 16 of 47 prefectures as of June 4, 2009. METHODS/PRINCIPAL FINDINGS: We analyzed all-segment concatenated genome sequences of 75 isolates of A(H1N1)pdm viruses in Japan, and compared them with 163 full-genome sequences in the world. Two analyzing methods, distance-based and Bayesian coalescent MCMC inferences were adopted to elucidate an evolutionary relationship of the viruses in the world and Japan. Regardless of the method, the viruses in the world were classified into four distinct clusters with a few exceptions. Cluster 1 was originated earlier than cluster 2, while cluster 2 was more widely spread around the world. The other two clusters (clusters 1.2 and 1.3) were suggested to be distinct reassortants with different types of segment assortments. The viruses in Japan seemed to be a multiple origin, which were derived from approximately 28 transported cases. Twelve cases were associated with monophyletic groups consisting of Japanese viruses, which were referred to as micro-clade. While most of the micro-clades belonged to the cluster 2, the clade of the first cases of infection in Japan originated from cluster 1.2. Micro-clades of Osaka/Kobe and the Fukuoka cases, both of which were school-wide outbreaks, were eradicated. Time of most recent common ancestor (tMRCA) for each micro-clade demonstrated that some distinct viruses were transmitted in Japan between late May and early June, 2009, and appeared to spread nation-wide throughout summer. CONCLUSIONS: Our results suggest that many viruses were transmitted from abroad in late May 2009 irrespective of preventive actions against the pandemic influenza, and that the influenza A(H1N1)pdm had become a pandemic stage in June 2009 in Japan
- …