41 research outputs found

    Common data elements for clinical research in mitochondrial disease: a National Institute for Neurological Disorders and Stroke project

    Get PDF
    Objectives The common data elements (CDE) project was developed by the National Institute of Neurological Disorders and Stroke (NINDS) to provide clinical researchers with tools to improve data quality and allow for harmonization of data collected in different research studies. CDEs have been created for several neurological diseases; the aim of this project was to develop CDEs specifically curated for mitochondrial disease (Mito) to enhance clinical research. Methods Nine working groups (WGs), composed of international mitochondrial disease experts, provided recommendations for Mito clinical research. They initially reviewed existing NINDS CDEs and instruments, and developed new data elements or instruments when needed. Recommendations were organized, internally reviewed by the Mito WGs, and posted online for external public comment for a period of eight weeks. The final version was again reviewed by all WGs and the NINDS CDE team prior to posting for public use

    OxPhos Defects Cause Hypermetabolism and Reduce Lifespan in Cells and in Patients With Mitochondrial Diseases

    Get PDF
    Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Exercise training as therapy for mitochondrial myopathies : physiological, biochemical and genetic effects

    No full text
    Patients with mitochondrial myopathies characteristically exhibit pronounced exercise intolerance, often associated with lactic acidosis, tachycardia and muscle weakness. These clinical features are attributable to impaired electron transport chain function in skeletal muscle. The usual etiology is a primary defect in mitochondrial DNA (mtDNA), where the severity of impairment is presumably linked to the ratio of mutant to wild-type mtDNA. This dissertation presents novel therapeutic approaches to these genetic defects, aimed at attenuating mitochondrial dysfunction and ameliorating the clinical condition by employing exercise training alone or in conjunction with pharmacological therapy. Dichloroacetate (DCA) was administered to augment mitochondrial capacity by activating pyruvate dehydrogenase, thereby decreasing lactic acidosis. Endurance and resistance training paradigms were employed to induce mitochondrial and satellite cell proliferation respectively. The goals were to augment respiratory chain function, increase levels of wild type mtDNA, and reverse effects of chronic inactivity. The effects of these treatments on functional and mitochondrial capacity were defined by changes in: (1) work capacity, oxygen utilization, and circulatory responses during maximal exercise; (2) heart rate and blood lactate during submaximal exercise; (3) recovery kinetics of phosphate-containing metabolites measured using phosphorus magnetic resonance spectroscopy ( 31P MRS); (4) scores on a quality of life questionnaire. The cellular correlates for these indices were defined by changes in: (1) mitochondrial volume, (2) respiratory chain enzyme activity, and (3) levels of mutant/wild-type mtDNA. Although DCA administration alone lowered blood lactate, endurance training was more effective in improving exercise capacity, heart rate and blood lactate, 31P MRS recovery kinetics, and quality of life. Increased mitochondrial volume and respiratory chain function were closely linke

    Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD

    No full text
    The multifactorial functional limitation of COPD increasingly demonstrates the need for an integrated circulatory assessment. In this study cardiac output (Qc) derived from non-inert (CO2-RB), inert (N2O-RB) gas rebreathing approaches and bioimpedance were compared to examine the limitations of currently available non-invasive techniques for exercise Qc determination in patients with chronic lung disease. Thirteen COPD patients (GOLD II-III) completed three constant cycling bouts at 20, 35, and 50% of peak work on two occasions to assess Qc with bioimpedance as well as using CO2-RB and N2O-RB for all exercise tests. Results showed significantly lower Qc using the N2O-RB or end-tidal CO2-derived Qc compared to the PaCO2-derived CO2-RB or the bioimpedance at rest and for all exercise intensities. End-tidal CO2-derived values are however not statistically different from those obtained using inert-gas rebreathing. This study show that in COPD patients, CO2-rebreathing Qc values obtained using PaCO2 contents which account for any gas exchange impairment or inadequate gas mixing are similar to those obtained using thoracic bioimpedance. Alternately, the lower values for N2O rebreathing derived Qc indicates the inability of this technique to account for gas exchange impairment in the computation of Qc. These findings indicate that the choice of a gas rebreathing technique to measure Qc in patients must be dictated by the ability to include in the derived computations a correction for either gas exchange inadequacies and/or a vascular shunt

    Eccentric Cycle Exercise in Severe COPD: Feasibility of Application

    No full text
    International audienceEccentric cycling may present an interesting alternative to traditional exercise rehabilitation for patients with advanced COPD, because of the low ventilatory cost associated with lengthening muscle actions. However, due to muscle damage and soreness typically associated with eccentric exercise, there has been reluctance in using this modality in clinical populations. This study assessed the feasibility of applying an eccentric cycling protocol, based on progressive muscle overload, in six severe COPD patients with the aim of minimizing side effects and maximizing compliance. Over 5 weeks, eccentric cycling power was progressively increased in all patients from a minimal 10-Watt workload to a target intensity of 60% peak oxygen consumption (attained in a concentric modality). By 5 weeks, patients were able to cycle on average at a 7-fold higher power output relative to baseline, with heart rate being maintained at similar to 85% of peak. All patients complied with the protocol and presented tolerable dyspnea and leg fatigue throughout the study; muscle soreness was minimal and did not compromise increases in power; creatine kinase remained within normal range or was slightly elevated; and most patients showed a breathing reserve > 15 L.min(-1). At the target intensity, ventilation and breathing frequency during eccentric cycling were similar to concentric cycling while power was approximately five times higher (p = 0.02). This study showed that an eccentric cycling protocol based on progressive increases in workload is feasible in severe COPD, with no side effects and high compliance, thus warranting further study into its efficacy as a training intervention

    The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease : disuse or dysfunction?

    No full text
    Peripheral muscle alterations have been recognized to contribute to disability in chronic obstructive pulmonary disease (COPD). Objectives: To describe the mitochondrial phenotype in a moderate to severe COPD population and age-matched controls
    corecore