2,681 research outputs found
Autocatalytic plume pinch-off
A localized source of buoyancy flux in a non-reactive fluid medium creates a
plume. The flux can be provided by either heat, a compositional difference
between the fluid comprising the plume and its surroundings, or a combination
of both. For autocatalytic plumes produced by the iodate-arsenous acid
reaction, however, buoyancy is produced along the entire reacting interface
between the plume and its surroundings. Buoyancy production at the moving
interface drives fluid motion, which in turn generates flow that advects the
reaction front. As a consequence of this interplay between fluid flow and
chemical reaction, autocatalytic plumes exhibit a rich dynamics during their
ascent through the reactant medium. One of the more interesting dynamical
features is the production of an accelerating vortical plume head that in
certain cases pinches-off and detaches from the upwelling conduit. After
pinch-off, a new plume head forms in the conduit below, and this can lead to
multiple generations of plume heads for a single plume initiation. We
investigated the pinch-off process using both experimentation and simulation.
Experiments were performed using various concentrations of glycerol, in which
it was found that repeated pinch-off occurs exclusively in a specific
concentration range. Autocatalytic plume simulations revealed that pinch-off is
triggered by the appearance of accelerating flow in the plume conduit.Comment: 10 figures. Accepted for publication in Phys Rev E. See also
http://www.physics.utoronto.ca/nonlinear/papers_chemwave.htm
Evaluation of nipple aspirate fluid as a diagnostic tool for early detection of breast cancer
YesThere has been tremendous progress in detection of breast cancer in postmenopausal women, resulting in two-thirds
of women surviving more than 20 years after treatment. However, breast cancer remains the leading cause of cancerrelated
deaths in premenopausal women. Breast cancer is increasing in younger women due to changes in life-style
as well as those at high risk as carriers of mutations in high-penetrance genes. Premenopausal women with breast
cancer are more likely to be diagnosed with aggressive tumours and therefore have a lower survival rate. Mammography
plays an important role in detecting breast cancer in postmenopausal women, but is considerably less sensitive
in younger women. Imaging techniques, such as contrast-enhanced MRI improve sensitivity, but as with all imaging
approaches, cannot differentiate between benign and malignant growths. Hence, current well-established detection
methods are falling short of providing adequate safety, convenience, sensitivity and specificity for premenopausal
women on a global level, necessitating the exploration of new methods. In order to detect and prevent the disease
in high risk women as early as possible, methods that require more frequent monitoring need to be developed. The
emergence of âomicsâ strategies over the last 20 years, enabling the characterisation and understanding of breast cancer
at the molecular level, are providing the potential for long term, longitudinal monitoring of the disease. Tissue and
serum biomarkers for breast cancer stratification, diagnosis and predictive outcome have emerged, but have not successfully
translated into clinical screening for early detection of the disease. The use of breast-specific liquid biopsies,
such as nipple aspirate fluid (NAF), a natural secretion produced by breast epithelial cells, can be collected non-invasively
for biomarker profiling. As we move towards an age of active surveillance, home-based liquid biopsy collection
kits are increasingly being applied and these could provide a paradigm shift where NAF biomarker profiling is used for
routine breast health monitoring. The current status of established and newly emerging imaging techniques for early
detection of breast cancer and the potential for alternative biomarker screening of liquid biopsies, particularly those
applied to high-risk, premenopausal women, will be reviewed.Proteomics research was supported by Yorkshire Cancer Research projects, BPP047 and B381PA, and co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation projects ΄ÎÎÎÎ/ÎÎÎÎŁ/0311(ÎÎÎ/07) and NEKYP/0311/17
Three Numerical Puzzles and the Top Quark's Chiral Weak-Moment
Versus the standard model's t --> W b decay helicity amplitudes, three
numerical puzzles occur at the 0.1 % level when one considers the amplitudes in
the case of an additional (f_M + f_E) coupling of relative strength 53 GeV. The
puzzles are theoretical ones which involve the t --> W b decay helicity
amplitudes in the two cases, the relative strength of this additional coupling,
and the observed masses of these three particles. A deeper analytic realization
is obtained for two of them. Equivalent realizations are given for the
remaining one. An empirical consequence of these analytic realizations is that
it is important to search for effects of a large chiral weak-moment of the
top-quark, the effective mass-scale is about 53 GeV. A full theoretical
resolution would include relating the origin of such a chiral weak-moment and
the mass generation of the top-quark, the W-boson, and probably the b-quark.Comment: 18 pages, 1 postscript table (revised to better explain notation,
model #1, add a little material...
Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci
African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics
The falling chain of Hopkins, Tait, Steele and Cayley
A uniform, flexible and frictionless chain falling link by link from a heap
by the edge of a table falls with an acceleration if the motion is
nonconservative, but if the motion is conservative, being the
acceleration due to gravity. Unable to construct such a falling chain, we use
instead higher-dimensional versions of it. A home camcorder is used to measure
the fall of a three-dimensional version called an -slider. After
frictional effects are corrected for, its vertical falling acceleration is
found to be . This result agrees with the theoretical
value of for an ideal energy-conserving -slider.Comment: 17 pages, 5 figure
Discovery of mating in the major African livestock pathogen Trypanosoma congolense
The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen
Human and animal Trypanosomes in CĂŽte d'Ivoire form a single breeding population.
BACKGROUND: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. METHODOLOGY/PRINCIPAL FINDINGS: A collection of sympatric T. brucei isolates from CĂŽte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. CONCLUSIONS/SIGNIFICANCE: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense
Fractal Dimension and Localization of DNA Knots
The scaling properties of DNA knots of different complexities were studied by
atomic force microscope. Following two different protocols DNA knots are
adsorbed onto a mica surface in regimes of (i) strong binding, that induces a
kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak
binding, that permits (partial) relaxation on the surface. In (i) the gyration
radius of the adsorbed DNA knot scales with the 3D Flory exponent within error. In (ii), we find , a value between the 3D
and 2D () exponents, indicating an incomplete 2D relaxation or a
different polymer universality class. Compelling evidence is also presented for
the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure
The t W- Mode of Single Top Production
The t W- mode of single top production is proposed as an important means to
study the weak interactions of the top quark. While the rate of this mode is
most likely too small to be observed at Run II of the Fermilab Tevatron, it is
expected to be considerably larger at the CERN LHC. In this article the
inclusive t W- rate is computed, including O(1 / log (m_t^2 / m_b^2))
corrections, and when combined with detailed Monte Carlo simulations including
the top and W decay products, indicate that the t W- single top process may be
extracted from the considerable t tbar and W+ W- j backgrounds at low
luminosity runs of the LHC.Comment: 16 pages, 4 figure
- âŠ