7 research outputs found

    The USP7 Inhibitor P5091 Induces Cell Death in Ovarian Cancers with Different P53 Status

    No full text
    Background/Aims: Ovarian cancer is often diagnosed at later stages with poor prognosis. Recent studies have associated the expression of deubiquitylase USP7 with the survival of ovarian cancers. Being a cysteine protease, USP7 could become a target for pharmacological intervention. Therefore, in this study, we assessed the influence of its inhibitor P5091 on ovarian cancer cells. Methods: Ovarian cancer cells were treated with P5091, and cell proliferation was measured with MTT assay; cell morphology was inspected under a phase-contrast microscope; cell cycle and cell death were examined by flow cytometry. To gain mechanistic insights into its effects, immunoblotting was performed to detect USP7, HDM2, p53, p21, apoptosis and autophagy related proteins. Results: P5091 effectively suppressed the growth of ovarian cancer cells, caused cell cycle blockage, and induced necrosis and apoptosis with more severe phenotypes observed in HeyA8 cells with wild-type p53 than in OVCAR-8 cells with mutant p53. P5091 also prompted autophagy, with more efficient p62 degradation in HeyA8. Conclusion: P5091 shows efficacy in suppressing ovarian cancers harbouring wild-type and mutant p53. Its effects seemed to be enhanced by wild-type p53. The potency of this USP7 inhibitor also correlated with autophagy to some extent. Therefore, the pharmacological targeting of USP7 may serve as a potential therapeutic strategy and warrants further investigation

    The exon 19-deleted EGFR undergoes ubiquitylation-mediated endocytic degradation via dynamin activity-dependent and -independent mechanisms

    No full text
    Abstract Background The epidermal growth factor receptor (EGFR) is closely implicated in cancer, and sequencing analyses have revealed a high mutation rate of EGFR in lung cancer. Recent advances have provided novel insights into the endocytic regulation of wild-type EGFR, but that of mutated EGFR remains elusive. In the present study, we aim to investigate the endocytic degradation of a frequently occurred exon 19-deleted mutant in lung cancer. Methods The EGF-induced endocytic degradation of EGFR was examined in a panel of lung cancer cells using immunoblotting. The subcellular distribution of internalized EGFR was investigated using immunofluorescence and confocal microscopy. The effects of dynamin were assessed using its small molecule inhibitors, while the influence of RTN3 was tested using shRNA-mediated knockdown. Finally the ubiquitylation status of EGFR mutant was studied using immunoprecipitation under steady state and tyrosine kinase inhibitor-treated conditions. Results EGF induced various rates of EGFR endocytic degradation in lung cancer cells. Interestingly, the exon 19 deletion mutant is constantly internalized and sorted to lysosome for degradation, and this process is independent of dynamin activity. EGF stimulation and HSP90 inhibition further enhance the endocytic degradation of the exon 19 deletion mutant, in a dynamin activity-dependent and -independent manner, respectively. Albeit with different modes of internalization, the uptake of the exon 19-deleted EGFR is mediated through receptor ubiquitylation. Conclusions The internalized EGFR mutant is constantly routed through endosome to lysosome for degradation. The endocytosis of EGFR mutant occurs through both dynamin activity-dependent and -independent mechanisms. Our findings gain novel insights into the endocytic regulation of mutated EGFR and may have potential clinical implications

    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects

    No full text
    Abstract Background The PD-L1/PD-1 pathway blockade-mediated immune therapy has shown promising efficacy in the treatment of multiple cancers including melanoma. The present study investigated the effects of the flavonoid apigenin on the PD-L1 expression and the tumorigenesis of melanoma. Methods The influence of flavonoids on melanoma cell growth and apoptosis was investigated using cell proliferation and flow cytometric analyses. The differential IFN-γ-induced PD-L1 expression and STAT1 activation were examined in curcumin and apigenin-treated melanoma cells using immunoblotting or immunofluorescence assays. The effects of flavonoid treatment on melanoma sensitivity towards T cells were investigated using Jurkat cell killing, cytotoxicity, cell viability, and IL-2 secretion assays. Melanoma xenograft mouse model was used to assess the impact of flavonoids on tumorigenesis in vivo. Human peripheral blood mononuclear cells were used to examine the influence of flavonoids on PD-L1 expression in dendritic cells and cytotoxicity of cocultured cytokine-induced killer cells by cell killing assays. Results Curcumin and apigenin showed growth-suppressive and pro-apoptotic effects on melanoma cells. The IFN-γ-induced PD-L1 upregulation was significantly inhibited by flavonoids, especially apigenin, with correlated reductions in STAT1 phosphorylation. Apigenin-treated A375 cells exhibited increased sensitivity towards T cell-mediated killing. Apigenin also strongly inhibited A375 melanoma xenograft growth in vivo, with enhanced T cell infiltration into tumor tissues. PD-L1 expression in dendritic cells was reduced by apigenin, which potentiated the cytotoxicity of cocultured cytokine-induced killer cells against melanoma cells. Conclusions Apigenin restricted melanoma growth through multiple mechanisms, among which its suppression of PD-L1 expression exerted a dual effect via regulating both tumor and antigen presenting cells. Our findings provide novel insights into the anticancer effects of apigenin and might have potential clinical implications

    Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer

    No full text
    Abstract Background ErbB2 overexpression identifies a subset of breast cancer as ErbB2-positive and is frequently associated with poor clinical outcomes. As a membrane-embedded receptor tyrosine kinase, cell surface levels of ErbB2 are regulated dynamically by membrane physical properties. The present study aims to investigate the influence of membrane cholesterol contents on ErbB2 status and cellular responses to its tyrosine kinase inhibitors. Methods The cholesterol abundance was examined in ErbB2-positive breast cancer cells using filipin staining. Cellular ErbB2 localizations were investigated by immunofluorescence with altered membrane cholesterol contents. The inhibitory effects of the cholesterol-lowering drug lovastatin were assessed using cell proliferation, apoptosis, immunoblotting and immunofluorescence assays. The synergistic effects of lovastatin with the ErbB2 inhibitor lapatinib were evaluated using an ErbB2-positive breast cancer xenograft mouse model. Results Membrane cholesterol contents positively correlated with cell surface distribution of ErbB2 through increasing the rigidity and decreasing the fluidity of cell membranes. Reduction in cholesterol abundance assisted the internalization and degradation of ErbB2. The cholesterol-lowering drug lovastatin significantly potentiated the inhibitory effects of ErbB2 kinase inhibitors, accompanied with enhanced ErbB2 endocytosis. Lovastatin also synergized with lapatinib to strongly suppress the in vivo growth of ErbB2-positive breast cancer xenografts. Conclusion The cell surface distribution of ErbB2 was closely regulated by membrane physical properties governed by cholesterol contents. The cholesterol-lowering medications can hence be exploited for potential combinatorial therapies with ErbB2 kinase inhibitors in the clinical treatment of ErbB2-positive breast cancer
    corecore