15 research outputs found

    Neuroplasticity and amblyopia: vision at the balance point

    Get PDF
    Purpose of review: New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. / Recent findings: Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the ‘critical period’, structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. / Summary: The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period

    Eye movements elevate crowding in idiopathic infantile nystagmus syndrome

    Get PDF
    Idiopathic infantile nystagmus syndrome is a disorder characterised by involuntary eye movements, which leads to decreased acuity and visual function. One such function is visual crowding - a process whereby objects that are easily recognised in isolation become impaired by nearby flankers. Crowding typically occurs in the peripheral visual field, although elevations in foveal vision have been reported in congenital nystagmus, similar to those found with amblyopia. Here, we examine whether elevated foveal crowding with nystagmus is driven by similar mechanisms to those of amblyopia - long-term neural changes associated with a sensory deficit - or by the momentary displacement of the stimulus through nystagmus eye movements. A Landolt-C orientation identification task was used to measure threshold gap sizes with and without either horizontally or vertically placed Landolt-C flankers. We assume that a sensory deficit should give equivalent crowding in these two dimensions, whereas an origin in eye movements should give stronger crowding with horizontal flankers given the predominantly horizontal eye movements of nystagmus. We observe elevations in nystagmic crowding that are above crowding in typical vision but below that of amblyopia. Consistent with an origin in eye movements, elevations were stronger with horizontal than vertical flankers in nystagmus, but not in typical or amblyopic vision. We further demonstrate the same horizontal elongation in typical vision with stimulus movement that simulates nystagmus. Consequently, we propose that the origin of nystagmic crowding lies in the eye movements, either through image smear of the target and flanker elements or through relocation of the stimulus into the peripheral retina

    Novel Biallelic Variants and Phenotypic Features in Patients with SLC38A8-Related Foveal Hypoplasia

    Get PDF
    Biallelic pathogenic variants in solute carrier family 38 member 8, SLC38A8, cause a pan-ocular autosomal recessive condition known as foveal hypoplasia 2, FVH2, characterised by foveal hypoplasia, nystagmus and optic nerve chiasmal misrouting. Patients are often clinically diagnosed with ocular albinism, but foveal hypoplasia can occur in several other ocular disorders. Here we describe nine patients from seven families who had molecularly confirmed biallelic recessive variants in SLC38A8 identified through whole genome sequencing or targeted gene panel testing. We identified four novel sequence variants (p.(Tyr88*), p.(Trp145*), p.(Glu233Gly) and c.632+1G>A). All patients presented with foveal hypoplasia, nystagmus and reduced visual acuity; however, one patient did not exhibit any signs of chiasmal misrouting, and three patients had features of anterior segment dysgenesis. We highlight these findings in the context of 30 other families reported to date. This study reinforces the importance of obtaining a molecular diagnosis in patients whose phenotype overlap with other inherited ocular conditions, in order to support genetic counselling, clinical prognosis and family planning. We expand the spectrum of SLC38A8 mutations which will be relevant for treatment through future genetic-based therapies

    Prospective Study of the Phenotypic and Mutational Spectrum of Ocular Albinism and Oculocutaneous Albinism

    Get PDF
    Albinism encompasses a group of hereditary disorders characterized by reduced or absent ocular pigment and variable skin and/or hair involvement, with syndromic forms such as Hermansky-Pudlak syndrome and Chédiak-Higashi syndrome. Autosomal recessive oculocutaneous albinism (OCA) is phenotypically and genetically heterogenous (associated with seven genes). X-linked ocular albinism (OA) is associated with only one gene, GPR143. We report the clinical and genetic outcomes of 44 patients, from 40 unrelated families of diverse ethnicities, with query albinism presenting to the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between November 2017 and October 2019. Thirty-six were children (≤ 16 years) with a median age of 31 months (range 2-186), and eight adults with a median age of 33 years (range 17-39); 52.3% (n = 23) were male. Genetic testing using whole genome sequencing (WGS, n = 9) or a targeted gene panel (n = 31) gave an overall diagnostic rate of 42.5% (44.4% (4/9) with WGS and 41.9% (13/31) with panel testing). Seventeen families had confirmed mutations in TYR (n = 9), OCA2, (n = 4), HPS1 (n = 1), HPS3 (n = 1), HPS6 (n = 1), and GPR143 (n = 1). Molecular diagnosis of albinism remains challenging due to factors such as missing heritability. Differential diagnoses must include SLC38A8-associated foveal hypoplasia and syndromic forms of albinism

    Binocular Therapy for Childhood Amblyopia Improves Vision Without Breaking Interocular Suppression

    Get PDF
    PURPOSE: Amblyopia is a common developmental visual impairment characterized by a substantial difference in acuity between the two eyes. Current monocular treatments, which promote use of the affected eye by occluding or blurring the fellow eye, improve acuity, but are hindered by poor compliance. Recently developed binocular treatments can produce rapid gains in visual function, thought to be as a result of reduced interocular suppression. We set out to develop an effective home-based binocular treatment system for amblyopia that would engage high levels of compliance but that would also allow us to assess the role of suppression in children's response to binocular treatment. METHODS: Balanced binocular viewing therapy (BBV) involves daily viewing of dichoptic movies (with “visibility” matched across the two eyes) and gameplay (to monitor compliance and suppression). Twenty-two children (3–11 years) with anisometropic (n = 7; group 1) and strabismic or combined mechanism amblyopia (group 2; n = 6 and 9, respectively) completed the study. Groups 1 and 2 were treated for a maximum of 8 or 24 weeks, respectively. RESULTS: The treatment elicited high levels of compliance (on average, 89.4% ± 24.2% of daily dose in 68.23% ± 12.2% of days on treatment) and led to a mean improvement in acuity of 0.27 logMAR (SD 0.22) for the amblyopic eye. Importantly, acuity gains were not correlated with a reduction in suppression. CONCLUSIONS: BBV is a binocular treatment for amblyopia that can be self-administered at home (with remote monitoring), producing rapid and substantial benefits that cannot be solely mediated by a reduction in interocular suppression

    Prospective study of pediatric patients presenting with idiopathic infantile nystagmus—Management and molecular diagnostics

    Get PDF
    Idiopathic infantile nystagmus (IIN) is an inherited disorder occurring in the first 6 months of life, with no underlying retinal or neurological etiologies and is predominantly caused by mutations in the FRMD7 gene. IIN poses a diagnostic challenge as underlying pre-symptomatic “multisystem” disorders varying from benign to life-threatening should first be ruled out before nystagmus can be labeled as idiopathic. A multidisciplinary approach including multimodal ocular investigations and next-generation sequencing with whole-genome sequencing (WGS) or targeted gene panel testing is required to delineate the exact etiology. We report the clinical and genetic outcomes of 22 patients, from 22 unrelated families of diverse ethnicities, with IIN seen in the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between 2016 and 2022. Thirty-six percent (8/22) received a confirmed molecular diagnosis with eight mutations identified in two genes (seven in FRMD7 including one novel variant c.706_707del; p. [Lys236Alafs*66], and one in GPR143). This study expands the mutational spectrum of IIN and highlights the significant role of an integrated care pathway and broader panel testing in excluding underlying pathologies

    Use of a Binocular Optical Coherence Tomography System to Evaluate Strabismus in Primary Position

    No full text
    Importance Current clinical methods for assessing strabismus can be prone to error. Binocular optical coherence tomography (OCT) has the potential to assess and quantify strabismus objectively and in an automated manner. Objective To evaluate the use of a binocular OCT prototype to assess the presence and size of strabismus. Design, Setting, and Participants Fifteen participants with strabismus were recruited in 2016 as part of the EASE study from Moorfields Eye Hospital National Health Service Foundation Trust, London, England, and 15 healthy volunteers underwent automated anterior segment imaging using the binocular OCT prototype. All participants had an orthoptic assessment, including alternating prism cover test (APCT), before undergoing imaging. Simultaneously acquired pairs of OCT images, captured with 1 eye fixating, were analyzed using ImageJ (National Institutes of Health) to assess the presence and angle of strabismus. Main Outcomes and Measures The direction and size of strabismus measured using binocular OCT was compared with that found using APCT. Results The median age for participants with strabismus was 55 years (interquartile range [IQR], 33-66.5 years) and for the healthy group, 50 years (IQR, 41-59 years); 15 participants (50%) were women, and 25 participants (83.3%) were white. The median magnitude of horizontal deviation was 20∆ (IQR, 13-35∆) and for vertical deviation, 3∆ (IQR, 0-5∆). Binocular OCT imaging correctly revealed the type and direction of the deviation in all 15 participants with strabismus, including horizontal and vertical deviations. The APCT and OCT measurements were strongly correlated for the horizontal (Pearson r = 0.85; 95% CI, 0.60-0.95; P < .001) and vertical (r = 0.89; 95% CI, 0.69-0.96; P < .001) deviations. In the healthy cohort, 9 of 15 participants (60%) had a latent horizontal deviation on APCT results (median magnitude 2∆, range 2-4∆). Six (40%) had orthophoria. Horizontal deviations were observed on OCT imaging results in 12 of the 15 participants (80%), and a vertical deviation was visible in 1 participant (6.7%). Conclusions and Relevance These findings suggest that binocular anterior segment OCT imaging can provide clinicians with a precise measurement of strabismus. The prototype can potentially incorporate several binocular vision tests that will provide quantitative data for the assessment, diagnosis, and monitoring of ocular misalignments
    corecore