6 research outputs found

    Re-challenging immune checkpoint inhibitor in a patient with advanced non-small cell lung cancer: a case report

    No full text
    Abstract Background Currently, immune checkpoint (ICP) inhibitors are essential drugs for the treatment of non-small cell lung cancer (NSCLC). However, in patients previously treated with ICP inhibitors, the efficacy and safety of re-challenging the same or another ICP inhibitor remain unclear. Case presentation We present the case of a patient treated with nivolumab for advanced NSCLC who was previously treated with an ICP inhibitor as the first-line chemotherapy along with heavy cytotoxic chemotherapy. After the failure of five lines of chemotherapy, 3 cycles of nivolumab, as the ICP inhibitor re-challenge, the patient achieved a partial response. Conclusions This case might suggest that re-challenging an ICP inhibitor could be clinically active in selected patients with advanced NSCLC who progress after achieving an initial clinical benefit with an ICP inhibitor

    The Gut Microbiome from a Biomarker to a Novel Therapeutic Strategy for Immunotherapy Response in Patients with Lung Cancer

    No full text
    The gastrointestinal microbiome has been shown to play a key role in determining the responses to cancer immunotherapy, including immune checkpoint inhibitor (ICI) therapy and CAR-T. In patients with non-small cell lung cancer (NSCLC), increasing evidence suggests that a microbiome composition signature is associated with clinical response to ICIs as well as with the development of immune-related adverse events. In support of this, antibiotic (ATB)-related dysbiosis has been consistently linked with the deleterious impact of ICI response, shortening the overall survival (OS) among patients on ATBs prior to ICI initiation. In parallel, several preclinical experiments have unravelled various strategies using probiotics, prebiotics, diet, and fecal microbiota transplantation as new therapeutic tools to beneficially shift the microbiome and enhance ICI efficacy. These approaches are currently being evaluated in clinical trials and have achieved encouraging preliminary results. In this article, we reviewed the recent studies on the gut microbiome as a potential biomarker and an adjuvant therapy to ICIs in NSCLC patients

    Cancer Cachexia among Patients with Advanced Non-Small-Cell Lung Cancer on Immunotherapy: An Observational Study with Exploratory Gut Microbiota Analysis

    No full text
    Cancer cachexia exerts a negative clinical influence on patients with advanced non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICI). The prognostic impact of body weight change during ICI treatment remains unknown. The gut microbiota (GM) is a key contributor to the response to ICI therapy in cancer patients. However, the association between cancer cachexia and GM and their association with the response to ICIs remains unexplored. This study examined the association of cancer cachexia with GM composition and assessed the impact of GM on clinical outcomes in patients with NSCLC treated with ICIs. In this observational, prospective study, which included 113 Japanese patients with advanced NSCLC treated with ICIs, the prevalence of cachexia was 50.4% (57/113). The median progression-free survival (PFS) and overall survival (OS) were significantly shorter in the cachexia group than in the non-cachexia group (4.3 vs. 11.6 months (p = 0.003) and 12.0 months vs. not reached (p = 0.02), respectively). A multivariable analysis revealed that baseline cachexia was independently associated with a shorter PFS. Moreover, a gain in body weight from the baseline (reversible cachexia) was associated with a significantly longer PFS and OS compared to irreversible cachexia. Microbiome profiling with 16S rRNA analysis revealed that the cachexia group presented an overrepresentation of the commensal bacteria, Escherichia-Shigella and Hungatella, while the non-cachexia group had a preponderance of Anaerostipes, Blautia, and Eubacterium ventriosum. Anaerostipes and E. ventriosum were associated with longer PFS and OS. Moreover, a cachexia status correlated with the systemic inflammatory marker-derived-neutrophil-to-lymphocytes ratio (dNLR) and Lung Immune Prognostic Index (LIPI) indexes. Our study demonstrates that cachexia and longitudinal bodyweight change have a prognostic impact on patients with advanced NSCLC treated with ICI therapy. Moreover, our study demonstrates that bacteria associated with ICI resistance are also linked to cachexia. Targeted microbiota interventions may represent a new type of treatment to overcome cachexia in patients with NSCLC
    corecore