18 research outputs found

    Evaluation of pharmacological and pharmacokinetic herb-drug interaction between irinotecan hydrochloride injection and Kangai injection in colorectal tumor-bearing mice and healthy rats

    Get PDF
    Introduction: Kangai (KA) injection, a Chinese herbal injection, is often used in combination with irinotecan (CPT-11) to enhance the effectiveness of anti-colorectal cancer treatment and alleviate side effects. However, the combined administration of this herb-drug pair remains controversial due to limited pre-clinical evidence and safety concerns. This study aimed to determine the pre-clinical herb-drug interactions between CPT-11 and KA injection to provide a reference for their clinical co-administration.Methods: In the pharmacological study, BALB/c mice with CT26 colorectal tumors were divided into four groups and treated with vehicle alone (0.9% saline), CPT-11 injection (100 mg/kg), KA injection (10 mL/kg), or a combination of CPT-11 and KA injection, respectively. The tumor volume of mice was monitored daily to evaluate the therapeutic effect. Daily body weight, survival rate, hematopoietic toxicity, immune organ indices, and gut toxicity were analyzed to study the adverse effects. Healthy Sprague-Dawley rats in the pharmacokinetic study were administered KA injection only (4 mL/kg), or a combination of CPT-11 injection (20 mg/kg) and KA injection, respectively. Six key components of KA injection (oxymatrine, matrine, ginsenoside Rb1, Rg1, Re, and astragaloside IV) in rat plasma samples collected within 24 h after administration were determined by LC-MS/MS.Results: The pharmacological study indicated that KA injection has the potential to enhance the anti-colorectal cancer efficacy of CPT-11 injection and alleviate the severe weight loss induced by CPT-11 injection in tumor-bearing mice. The pharmacokinetic study revealed that co-administration resulted in inhibition of oxymatrine metabolism in rats, evidenced by the significantly reduced Cmax and AUC0-t of its metabolite, matrine (p < 0.05), from 2.23 ± 0.24 to 1.38 ± 0.12 μg/mL and 8.29 ± 1.34 to 5.30 ± 0.79 μg h/mL, respectively. However, due to the similar efficacy of oxymatrine and matrine, this may not compromise the anti-cancer effect of this herb-drug pair.Discussion: This study clarified the pre-clinical pharmacology and pharmacokinetic benefits and risks of the CPT-11-KA combination and provided a reference for their clinical co-administration

    Whether Cord Blood or Venous Blood Procalcitonin Level for Better Prediction of Maternofetal Infections in Algerian Newborns?

    No full text
    This prospective study aims to measure and compare the level of umbilical cord blood and venous blood procalcitonin (PCT) for a better and more rapid prediction of maternofetal infections in Algerian newborns. The study was conducted at the hospital of child and mother of Setif in Algeria from 2016 to 2018. 164 Algerian term suspected newborns born alive to mothers with Maternofetal infection (MFI) risk factors were included. 69 non-infectious newborns born alive to mothers without MFI risk factors served as the control group. The venous blood and cord blood in each group were collected. PCT levels were determined and compared to CRP levels. Receiver operating curves (ROC) were generated to detect the best cut-off values for sensitivity and specificity. Levels of both cord blood and venous blood procalcitonin were significantly higher in the suspected group than those in the control group (P<0.05). According to the ROC curve, at the cut-off value of cord blood PCT of 0.595 ng/mL, the sensitivity and specificity were 92.3 %, 91.8 % respectively. At the cut-off value of venous blood PCT of 1.12 ng/mL, the sensitivity and specificity were 100%, 80.5% respectively. The diagnostic value of cord blood PCT for maternofetal infections is higher than venous blood PCT. Keywords:   Algerian term newborns, Cord blood, Procalcitonin, Maternofetal infections

    Simultaneous determination of indapamide, perindopril and perindoprilat in human plasma or whole blood by UPLC-MS/MS and its pharmacokinetic application

    No full text
    Simple and sensitive methods were developed for the determination of indapamide, perindopril and its active metabolite perindoprilat in human plasma or whole blood by hyphenated ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Indapamide-d3, perindopril-d4 and perindoprilat-d4 were used as the internal standards. The separation was performed on a Thermo BDS Hypersil C18 column (4.6 mm × 100 mm, 2.4 µm) for indapamide and perindopril simultaneously following a protein precipitation pretreatment of the biosamples. The separation of perindoprilat was achieved independently on a phenomenex PFP column (4.6 mm × 150 mm, 5 µm). All the analytes were quantitated with positive electrospray ionization and multiple reactions monitoring mode. The assay exhibited a linear range of 1–250 ng/mL for indapamide, 0.4–100 ng/mL for perindopril and 0.2–20 ng/mL for perindoprilat. The methods were fully validated to meet the requirements for bioassay in accuracy, precision, recovery, reproducibility, stabilities and matrix effects, and successfully applied to the pharmacokinetic study of perindopril tert-butylamine/indapamide compound tablets in Chinese healthy volunteers and the comparative pharmacokinetic study between plasma and whole blood. Keywords: Indapamide, Perindopril, Perindoprilat, Pharmacokinetics, LC-MS/M

    Analysis of bacitracin and its related substances by liquid chromatography tandem mass spectrometry

    No full text
    A suitable liquid chromatography quadrupole time-of-flight mass spectrometric (LC–Q-TOF–MS) method was developed for separation and characterization of related substances in bacitracin test drug. The separation was performed on LiChrospher RP-18 column using methanol as mobile phase A and 0.2% ammonium acetate buffer solution as mobile phase B in gradient elution. A total of 12 related substances were detected through high resolution mass spectrometric determination in a positive electrospray ionization mode. They were identified as co-existing active components and degradation products of bacitracin through the analysis and elucidation of both the protonated parents and the product ions of all the related substances and their fragmentation pathways were also proposed

    Pharmacovigilance of Herb-Drug Interactions: A Pharmacokinetic Study on the Combined Administration of Tripterygium Glycosides Tablets and Leflunomide Tablets in Rats by LC-MS/MS

    No full text
    A popular and widely used combination therapy of leflunomide (LEF) and Tripterygium glycosides tablets (TGTS) has become a valuable clinical tool in China for the treatment of rheumatoid arthritis. This regimen has not been evaluated either in terms of interaction or toxicity, even given the rising concerns about LEF’s prolonged elimination half-life and TGT’s narrow therapeutic index, in addition to the current trend of using high doses of LEF. Thus, this study determines the potential adverse drug reactions between these two medicines. Reliable validated LC-MS/MS methods were used for the determination of teriflunomide (TER, the only active metabolite of LEF), and the main components of TGT: wilforlide A, wilforgine, wilfortrine, wilfordine, and wilforine. The results obtained from this investigation, as paralleled with the control groups, revealed that the Cmax and AUC0-t of TER were significantly decreased with separate co-administration, as the Cmax and AUC0-t were 30.17 ± 1.55 μg/mL and 24.47 ± 2.50 μg/mL, 374.55 ± 15.54 μg h/mL and 336.94 ± 21.19 μg h/mL, respectively (p < 0.05). Meanwhile, the pharmacokinetic profiles of the main components of TGT have also been affected by separate co-administration in rats. Therefore, herb–drug interactions between LEF and TGT have been proven

    Profiling and Preparation of Metabolites from Pyragrel in Human Urine by Online Solid-Phase Extraction Coupled with High Performance Liquid Chromatography Tandem Mass Spectrometry Followed by a Macroporous Resin-Based Purification Approach

    No full text
    Pyragrel, a new anticoagulant drug, is derived from the molecular combination of ligustrazine and ferulic acid. Pyragrel showed significant inhibitory activity against platelet aggregation induced by adenosine diphosphate (ADP), and had been approved for a phase I clinical trial by CFDA. To characterize the metabolites of Pyragrel in human urine after intravenous administration, a reliable online solid-phase extraction couple with high performance liquid chromatography tandem mass spectrometry (online SPE-HPLC-MSn) method was conceived and applied. Five metabolites were detected and tentatively identified, which suggested that the major metabolic pathways of Pyragrel in human were double-bond reduction, double-bond oxidation, and then followed by glucuronide conjugation. Two main metabolites were then prepared using β-glucuronide hydrolysis and macroporous resin purification approach followed by preparative high-performance liquid chromatography (PHPLC) method, with their structures confirmed on the basis of nuclear magnetic resonance (NMR) data. This study provided information for the further study of the metabolism and excretion of Pyragrel

    Danggui Buxue Decoction Sensitizes the Response of Non-Small-Cell Lung Cancer to Gemcitabine via Regulating Deoxycytidine Kinase and P-glycoprotein

    No full text
    This study aimed to investigate whether the anti-tumor effect of gemcitabine (GEM) in non-small-cell lung cancer (NSCLC) treatment was affected by Danggui Buxue decoction (DBD), and explore the potential mechanisms. The combined use of GEM and DBD showed an enhanced tumor growth inhibition effect in a murine Lewis lung carcinoma (LLC) model. LC-MS/MS results showed that the pharmacokinetic behaviors of a GEM active metabolite, gemcitabine triphosphate (dFdCTP), were found to be altered remarkably in the peripheral blood mononuclear cells (PBMC) of DBD co-administration rats. In addition, after co-administration of DBD with GEM, Western Blot and qPCR results confirmed that the expression of deoxycytidine kinase (dCK) in tumor tissues of LLC-bearing mice were markedly increased. DBD co-administration also reversed the upregulation of P-glycoprotein (P-gp) in tumor tissues induced by GEM. Moreover, DBD could notably up-regulate the IL-12p70 and GM-CSF expression in mice serum, suggesting potential immunomodulatory activities in tumor-bearing mice. Meanwhile, DBD inhibited the P-gp efflux activity in A549 cells. Therefore, the regulation of dCK and P-gp played important roles in the alternation of GEM pharmacokinetics and the enhancement of the anti-tumor effect of GEM. DBD being a potential dCK promoter could work as an adjuvant agent to boost the anticancer effect of GEM
    corecore