83 research outputs found

    One-stage hybrid procedure for aberrant right subclavian artery and thoracic aneurysm

    Get PDF
    A 60-year-old man without any symptoms was referred to our department because computed tomography revealed an aberrant right subclavian artery (ARSA) and a saccular aortic aneurysm arising opposite to the ARSA. We performed the following procedures through a median sternotomy: total arch replacement, insertion of a frozen elephant trunk to exclude the aneurysm and ARSA, placement of a vascular plug under transesophageal ultrasonography to occlude the dilated ARSA, and right axillary artery bypass. Postoperative computed tomography showed complete occlusion of the ARSA and exclusion of the aneurysm. This procedure should be considered an alternative strategy for treatment of patients with an ARSA

    HMGA1a Recognition Candidate DNA Sequences in Humans

    Get PDF
    High mobility group protein A1a (HMGA1a) acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences “-(G/A)-G-(A/T)-(A/T)-A-T-T-T-” as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500–900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer

    Psychosis and Adhesion Molecules

    Get PDF

    Is elevation of the serum β-d-glucan level a paradoxical sign for Trichosporon fungemia in patients with hematologic disorders?

    Get PDF
    SummaryThe detection of serum 1,3-β-d-glucan (BDG) has been reported to be useful for the diagnosis and therapeutic monitoring of various invasive fungal infections. Although Trichosporon fungemia is increasingly recognized as a fatal mycosis in immunocompromised patients, the utility of this assay for Trichosporon fungemia is still unknown. In our experience (28 cases), the level of BDG rose in about half of the patients with hematologic disorders who developed Trichosporon fungemia. Among them, early death from this infection was more frequently seen in BDG-negative patients than in BDG-positive patients. In addition, overall survival was also significantly worse in BDG-negative patients than in BDG-positive patients. There were no significant differences between these two patient groups in terms of clinical background. Unlike for other invasive fungal infections, elevation of BDG level may indicate a paradoxical sign for Trichosporon fungemia in patients with hematologic disorders

    Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death

    Get PDF
    Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-β (Aβ)–induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Aβ, and Aβ-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease

    Dysbindin Regulates the Transcriptional Level of Myristoylated Alanine-Rich Protein Kinase C Substrate via the Interaction with NF-YB in Mice Brain

    Get PDF
    BACKGROUND: An accumulating body of evidence suggests that Dtnbp1 (Dysbindin) is a key susceptibility gene for schizophrenia. Using the yeast-two-hybrid screening system, we examined the candidate proteins interacting with Dysbindin and revealed one of these candidates to be the transcription factor NF-YB. METHODS: We employed an immunoprecipitation (IP) assay to demonstrate the Dysbindin-NF-YB interaction. DNA chips were used to screen for altered expression of genes in cells in which Dysbindin or NF-YB was down regulated, while Chromatin IP and Reporter assays were used to confirm the involvement of these genes in transcription of Myristoylated alanine-rich protein kinase C substrate (MARCKS). The sdy mutant mice with a deletion in Dysbindin, which exhibit behavioral abnormalities, and wild-type DBA2J mice were used to investigate MARCKS expression. RESULTS: We revealed an interaction between Dysbindin and NF-YB. DNA chips showed that MARCKS expression was increased in both Dysbindin knockdown cells and NF-YB knockdown cells, and Chromatin IP revealed interaction of these proteins at the MARCKS promoter region. Reporter assay results suggested functional involvement of the interaction between Dysbindin and NF-YB in MARCKS transcription levels, via the CCAAT motif which is a NF-YB binding sequence. MARCKS expression was increased in sdy mutant mice when compared to wild-type mice. CONCLUSIONS: These findings suggest that abnormal expression of MARCKS via dysfunction of Dysbindin might cause impairment of neural transmission and abnormal synaptogenesis. Our results should provide new insights into the mechanisms of neuronal development and the pathogenesis of schizophrenia

    Aberrant Cerebellar–Cerebral Functional Connectivity in Children and Adolescents With Autism Spectrum Disorder

    Get PDF
    The cerebellum, which forms widespread functional networks with many areas in the cerebral cortices and subcortical structures, is one of the brain regions most consistently reported to exhibit neuropathological features in patients with autism spectrum disorder (ASD). However, cerebellar functional connectivity (FC) studies in patients with ASD have been very sparse. Using resting state functional connectivity (rsFC) analysis, we investigated the FC of the hemispheric/vermal subregions and the dentate nucleus of the cerebellum with the cerebral regions in 36 children and adolescents [16 participants with ASD, 20 typically developing (TD) participants, age: 6–15 years]. Furthermore, an independent larger sample population (42 participants with ASD, 88 TD participants, age: 6–15 years), extracted from the Autism Brain Imaging Data Exchange (ABIDE) II, was included for replication. The ASD group showed significantly increased or decreased FC between “hubs” in the cerebellum and cerebral cortices, when compared with the TD group. Findings of aberrant FCs converged on the posterior hemisphere, right dentate nucleus, and posterior inferior vermis of the cerebellum. Furthermore, these aberrant FCs were found to be related to motor, executive, and socio-communicative functions in children and adolescents with ASD when we examined correlations between FC and behavioral measurements. Results from the original dataset were partially replicated in the independent larger sample population. Our findings suggest that aberrant cerebellar–cerebral FC is associated with motor, socio-communicative, and executive functions in children and adolescents with ASD. These observations improve the current knowledge regarding the neural substrates that underlie the symptoms of ASD

    Yokukansan Inhibits Neuronal Death during ER Stress by Regulating the Unfolded Protein Response

    Get PDF
    Recently, several studies have reported Yokukansan (Tsumura TJ-54), a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death.We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein.Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu), a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs.Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD

    An In Vitro Model for Lewy Body-Like Hyaline Inclusion/Astrocytic Hyaline Inclusion: Induction by ER Stress with an ALS-Linked SOD1 Mutation

    Get PDF
    Neuronal Lewy body-like hyaline inclusions (LBHI) and astrocytic hyaline inclusions (Ast-HI) containing mutant Cu/Zn superoxide dismutase 1 (SOD1) are morphological hallmarks of familial amyotrophic lateral sclerosis (FALS) associated with mutant SOD1. However, the mechanisms by which mutant SOD1 contributes to formation of LBHI/Ast-HI in FALS remain poorly defined. Here, we report induction of LBHI/Ast-HI-like hyaline inclusions (LHIs) in vitro by ER stress in neuroblastoma cells. These LHI closely resemble LBHI/Ast-HI in patients with SOD1-linked FALS. LHI and LBHI/Ast-HI share the following features: 1) eosinophilic staining with a pale core, 2) SOD1, ubiquitin and ER resident protein (KDEL) positivity and 3) the presence of approximately 15–25 nm granule-coated fibrils, which are morphological hallmark of mutant SOD1-linked FALS. Moreover, in spinal cord neurons of L84V SOD1 transgenic mice at presymptomatic stage, we observed aberrant aggregation of ER and numerous free ribosomes associated with abnormal inclusion-like structures, presumably early stage neuronal LBHI. We conclude that the LBHI/Ast-HI seen in human patients with mutant SOD1-linked FALS may arise from ER dysfunction
    corecore