3 research outputs found

    Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator

    No full text
    In this article, an ultrathin terahertz dual band metamaterial absorber made up of patterned asymmetrical double-split rings and a continuous metal layer separated by a thin FR-4 layer is designed. Simulation results show that two almost identical strong absorption peaks appear in the terahertz band. When the incident electric field is perpendicular to the ring gaps located at 11 μm asymmetrically, the absorptivity of 98.6% at 4.48 THz and 98.5% at 4.76 THz can be obtained. The absorption frequency and the absorptivity of the absorber can be modulated by the asymmetric distribution of the gaps. The perfect metamaterial absorber is expected to provide important reference for the design of terahertz modulator, filters, absorbers, and polarizers

    Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves

    No full text
    We designed an ultra-thin dual-band metamaterial absorber by adjusting the side strips’ length of an H-shaped unit cell in the opposite direction to break the structural symmetry. The dual absorption peaks approximately 99.95% and 99.91% near the central resonance frequency of 4.72 THz and 5.0 THz were obtained, respectively. Meanwhile, a plasmon-induced transmission (PIT) like reflection window appears between the two absorption frequencies. In addition to theoretical explanations qualitatively, a multi-reflection interference theory is also investigated to prove the simulation results quantitatively. This work provides a way to obtain perfect dual-band absorption through an asymmetric metamaterial structure, and it may achieve potential applications in a variety of fields including filters, sensors, and some other functional metamaterial devices
    corecore