1,012 research outputs found
GRID: Scene-Graph-based Instruction-driven Robotic Task Planning
Recent works have shown that Large Language Models (LLMs) can promote
grounding instructions to robotic task planning. Despite the progress, most
existing works focused on utilizing raw images to help LLMs understand
environmental information, which not only limits the observation scope but also
typically requires massive multimodal data collection and large-scale models.
In this paper, we propose a novel approach called Graph-based Robotic
Instruction Decomposer (GRID), leverages scene graph instead of image to
perceive global scene information and continuously plans subtask in each stage
for a given instruction. Our method encodes object attributes and relationships
in graphs through an LLM and Graph Attention Networks, integrating instruction
features to predict subtasks consisting of pre-defined robot actions and target
objects in the scene graph. This strategy enables robots to acquire semantic
knowledge widely observed in the environment from the scene graph. To train and
evaluate GRID, we build a dataset construction pipeline to generate synthetic
datasets in graph-based robotic task planning. Experiments have shown that our
method outperforms GPT-4 by over 25.4% in subtask accuracy and 43.6% in task
accuracy. Experiments conducted on datasets of unseen scenes and scenes with
different numbers of objects showed that the task accuracy of GRID declined by
at most 3.8%, which demonstrates its good cross-scene generalization ability.
We validate our method in both physical simulation and the real world
Borophene-based materials for energy, sensors and information storage applications
Borophene, as a rising-star monoelemental two-dimensional (2D) material, has motivated great interest because of its novel properties, such as anisotropic plasmonics, high carrier mobility, mechanical compliance, optical transparency, ultrahigh thermal conductance, and superconductivity. These properties make it an ideal candidate for use in the field of energy, sensors, and information storage. Stimulated by the realization of pioneering experimental works in 2015 and the follow-up synthesis experiments, a series of high-performance borophene-based devices in the fields, including supercapacitors, batteries, hydroelectric generators, humidity sensors, gas sensors, pressure sensors, and memories, have been experimentally reported in recent years, which are beneficial to the transition of borophene-based materials from experimental synthesis to practical application. Therefore, in addition to paying attention to the experimental preparation of borophene, significant efforts are needed to promote the advancement of related applications of borophene. In this review, after providing a brief overview of borophene evolution and synthesis, we mainly summarize the applications of borophene-based materials in energy storage, energy conversion, energy harvesting, sensors, and information storage. Finally, based on the current research status, some rational suggestions and discussions on the issues and challenges in the future research direction are proposed
Mechanistic Study of Oxidation of Hypophosphite on Pt Electrodes by SNIFTIRS
用SNIFTIRS和循环伏安法研究次亚磷酸根离子在多晶铂电极上的电氧化机理 .分析了0 .5mol/LH2 SO4 + 0 .1mol/LNaH2 PO2 溶液中原位红外反射谱图与Pt电极电位的关系 ,发现次亚磷酸根离子在Pt上发生解离吸附 ,其氧化产物是H3 PO4 ,不同于在Ni上的氧化产物H2 PO- 3 ,据此提出了酸性溶液中次亚磷酸根离子在Pt上氧化机理的新看法The oxidation of hypophosphite on a polycrystalline platinum electrode was studied by SNIFTIRS and cyclic voltammetry, the in-situ IR spectra were analyzed as a function of Pt electrode potentials in the solution of 0.5 mol/L H 2SO 4+0.1 mol/L NaH 2PO 2. It was found that the dissociative adsorption of hypophosphite ions occurs on Pt surface, and the oxidation product is H 3PO 4, rather than H 2PO 3 - which was considered to produce on Ni electrodes, thereby a new insight into mechanism of hypophosphite oxidation on Pt in acidic media was provided.作者联系地址:厦门大学化学化工学院,固体表面物理化学国家重点实验室,厦门大学化学化工学院,固体表面物理化学国家重点实验室 福建厦门361005 ,福建厦门361005Author's Address: Dept. of Chem., State Key Lab. for Phys. Chem. of the Solid Surfaces,Xiamen Univ., Xiamen 361005, Chin
Multiple microRNAs regulate tacrolimus metabolism through CYP3A5
The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacmlimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacmlimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacmlimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4a, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacmlimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism
Stabilization of Ni-containing Keggin-type polyoxometalates with variable oxidation states as novel catalysts for electrochemical water oxidation †
The development of new recyclable and inexpensive electrochemically active species for water oxidation catalysis is the most crucial step for future utilization of renewables. Particularly, transition metal complexes containing internal multiple, cooperative metal centers to couple with redox catalysts in the inorganic Keggin-type polyoxometalate (POM) framework at high potential or under extreme pH conditions would be promising candidates. However, most reported Ni-containing POMs have been highly unstable towards hydrolytic decomposition, which precludes them from application as water oxidation catalysts (WOCs). Here, we have prepared new tri-Ni-containing POMs with variable oxidation states by charge tailored synthetic strategies for the first time and developed them as recyclable POMs for water oxidation catalysts. In addition, by implanting corresponding POM anions into the positively charged MIL-101(Cr) metal–organic framework (MOF), the entrapped Ni2+/Ni3+ species can show complete recyclability for water oxidation catalysis without encountering uncontrolled hydrolysis of the POM framework. As a result, a low onset potential of approximately 1.46 V vs. NHE for water oxidation with stable WOC performance is recorded. Based on this study, rational design and stabilization of other POM-electrocatalysts containing different multiple transition metal centres could be made possible
-scaling and Information Entropy in Ultra-Relativistic Nucleus-Nucleus Collisions
The -scaling method has been applied to ultra-relativistic p+p, C+C
and Pb+Pb collision data simulated using a high energy Monte Carlo package,
LUCIAE 3.0. The -scaling is found to be valid for some physical
variables, such as charged particle multiplicity, strange particle multiplicity
and number of binary nucleon-nucleon collisions from these simulated
nucleus-nucleus collisions over an extended energy ranging from = 20
to 200 A GeV. In addition we derived information entropy from the multiplicity
distribution as a function of beam energy for these collisions.Comment: 4 pages, 4 figures, 1 table; to appear in the July Issue of Chin.
Phys. Lett.. Web Page: http://www.iop.org/EJ/journal/CP
Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia.
BACKGROUND: Although the association between dengue in Bali, Indonesia, and imported dengue in Australia has been widely asserted, no study has quantified this association so far. METHODS: Monthly data on dengue and climatic factors over the past decade for Bali and Jakarta as well as monthly data on imported dengue in Australia underwent a three-stage analysis. Stage I: a quasi-Poisson regression with distributed lag non-linear model was used to assess the associations of climatic factors with dengue in Bali. Stage II: a generalized additive model was used to quantify the association of dengue in Bali with imported dengue in Australia with and without including the number of travelers in log scale as an offset. Stage III: the associations of mean temperature and rainfall (two climatic factors identified in stage I) in Bali with imported dengue in Australia were examined using stage I approach. RESULTS: The number of dengue cases in Bali increased with increasing mean temperature, and, up to a certain level, it also increased with increasing rainfall but dropped off for high levels of rainfall. Above a monthly incidence of 1.05 cases per 100,000, dengue in Bali was almost linearly associated with imported dengue in Australia at a lag of one month. Mean temperature (relative risk (RR) per 0.5 °C increase: 2.95, 95% confidence interval (CI): 1.87, 4.66) and rainfall (RR per 7.5 mm increase: 3.42, 95% CI: 1.07, 10.92) in Bali were significantly associated with imported dengue in Australia at a lag of four months. CONCLUSIONS: This study suggests that climatic factors (i.e., mean temperature and rainfall) known to be conducive of dengue transmission in Bali can provide an early warning with 4-month lead time for Australia in order to mitigate future outbreaks of local dengue in Australia. This study also provides a template and framework for future surveillance of travel-related infectious diseases globally
ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner
Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4. © 2013 zheng et al.published_or_final_versio
- …