1,625 research outputs found
Recommended from our members
Biosynthesis of Putrescine from L-arginine Using Engineered Escherichia coli Whole Cells
Putrescine, a biogenic amine, is a highly valued compound in medicine, industry, and agriculture. In this study, we report a whole-cell biocatalytic method in Escherichia coli for the production of putrescine, using L-arginine as the substrate. L-arginine decarboxylase and agmatine ureohydrolase were co-expressed to produce putrescine from L-arginine. Ten plasmids with different copy numbers and ordering of genes were constructed to balance the expression of the two enzymes, and the best strain was pACYCDuet-speB-speA. The optimal concentration of L-arginine was determined to be 20 mM for this strain. The optimum pH of the biotransformation was 9.5, and the optimum temperature was 45 °C; under these conditions, the yield of putrescine was 98%. This whole-cell biocatalytic method appeared to have great potential for the production of putrescine.</jats:p
Preliminary studies: the potential anti-angiogenic activities of two Sulawesi Island (Indonesia) propolis and their chemical characterization.
Several studies have previously reported propolis, or its constituents, to inhibit tumour angiogenesis. The anti-angiogenic activity of two Indonesian stingless bee propolis extracts from Sulawesi Island on vascular cells were assessed. Sample D01 was obtained from the outer side of bee hives, while D02 was from the inner side of the same hives. The extracts were profiled by using liquid chromatography coupled to high resolution mass spectrometry. The anti-angiogenic capacity was assessed on HUVECs and placenta-derived pericytes by cell viability, multi-channel wound healing, and CoCl2 based-hypoxia assays. The exact chemical composition has not been confirmed. The most abundant compounds in Indonesian sample D01 seem to be unusual since they do not immediately fall into a clear class. Two of the most abundant compounds have elemental compositions matching actinopyrones. Identification on the basis of elemental composition is not definitive but compounds in D01 are possibly due to unusually modified terpenoids. Sample D02 has abundant compounds which include four related diterpenes with differing degrees of oxygenation and some sesquiterpenes. However, again the profile is unusual. The anti-angiogenic assays demonstrated that D01 elicited a strong cytotoxic effect and a considerable anti-migratory activity on the vascular cells. Although D02 demonstrated a much weaker cytotoxic effect on the cell lines compared to D01, it elicited a substantial protective effect on the pericytes against CoCl2-induced dropout in an experiment to mimic a micro-environment commonly associated with angiogenesis and tumour growth. These results demonstrate modulatory effects of these propolis samples in vascular cells, which requires further investigation
Chemogenomics approaches to rationalising compound action of traditional Chinese and Ayurvedic medicines
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector
In this paper, we present a novel end-to-end group collaborative learning
network, termed GCoNet+, which can effectively and efficiently (250 fps)
identify co-salient objects in natural scenes. The proposed GCoNet+ achieves
the new state-of-the-art performance for co-salient object detection (CoSOD)
through mining consensus representations based on the following two essential
criteria: 1) intra-group compactness to better formulate the consistency among
co-salient objects by capturing their inherent shared attributes using our
novel group affinity module (GAM); 2) inter-group separability to effectively
suppress the influence of noisy objects on the output by introducing our new
group collaborating module (GCM) conditioning on the inconsistent consensus. To
further improve the accuracy, we design a series of simple yet effective
components as follows: i) a recurrent auxiliary classification module (RACM)
promoting the model learning at the semantic level; ii) a confidence
enhancement module (CEM) helping the model to improve the quality of the final
predictions; and iii) a group-based symmetric triplet (GST) loss guiding the
model to learn more discriminative features. Extensive experiments on three
challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that
our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been
released at https://github.com/ZhengPeng7/GCoNet_plus
Establishing an EU-China consortium on traditional Chinese medicine research.
Traditional Chinese medicine (TCM) is widely used in the European Union (EU) and attracts intense research interests from European scientists. As an emerging area in Europe, TCM research requires collaboration and coordination of actions. Good Practice in Traditional Chinese Medicine Research in the Post-genomic Era, also known as GP-TCM, is the first ever EU-funded 7th Framework Programme (FP7) coordination action, aiming to inform the best practice and harmonise research on the safety and efficacy of TCM through interdisciplinary exchange of experience and expertise among clinicians and scientists. With its increasingly large pool of expertise across 19 countries including 13 EU member states, Australia, Canada, China, Norway, Thailand and the USA, the consortium provides forums and collaboration platforms on quality control, extraction technology, component analysis, toxicology, pharmacology and regulatory issues of Chinese herbal medicine (CHM), as well as on acupuncture studies, with a particular emphasis on the application of a functional genomics approach. The project officially started in May 2009 and by the time of its conclusion in April 2012 a Europe-based academic society dedicated to TCM research will be founded to carry on the mission of GP-TCM.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Prediction and identification of synergistic compound combinations against pancreatic cancer cells.
Resistance to current therapies is common for pancreatic cancer and hence novel treatment options are urgently needed. In this work, we developed and validated a computational method to select synergistic compound combinations based on transcriptomic profiles from both the disease and compound side, combined with a pathway scoring system, which was then validated prospectively by testing 30 compounds (and their combinations) on PANC-1 cells. Some compounds selected as single agents showed lower GI50 values than the standard of care, gemcitabine. Compounds suggested as combination agents with standard therapy gemcitabine based on the best performing scoring system showed on average 2.82-5.18 times higher synergies compared to compounds that were predicted to be active as single agents. Examples of highly synergistic in vitro validated compound pairs include gemcitabine combined with Entinostat, thioridazine, loperamide, scriptaid and Saracatinib. Hence, the computational approach presented here was able to identify synergistic compound combinations against pancreatic cancer cells
Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2-Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors.
BACKGROUND: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. RESULTS: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. CONCLUSIONS: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance
Recommended from our members
Cognitive-enhancing effects of polygalasaponin hydrolysate in aβ(25-35)-induced amnesic mice.
Polygalasaponins are the major active constituents of Polygala tenuifolia exhibiting antiamnesic activity, but their applications are limited due to their toxicities. Evidence showed that the toxicities can be attenuated by hydrolysis. Herein, effects of a hydrolysate of polygalasaponins (HPS) on cognitive impairment induced by Aβ(25-35) were assessed by Morris water maze and step-through passive avoidance tests. The impaired spatial reference memory was improved by HPS (50 and 100 mg/kg). In the acquisition trial of step-through test, HPS (50 and 100 mg/kg) increased the latency into the dark chamber and decreased the error frequency significantly (P < .05). However, no significant change was observed during the retention trial. Additionally, HPS increased the corresponding SOD activities (62.34%, 22.09%) and decreased MDA levels (28.21%, 32.35%) in both cortex and hippocampus as compared to model animals. These results show that HPS may be a useful treatment against amnesia probably via its antioxidant properties.Peer Reviewe
- …