10,257 research outputs found

    Band structure of honeycomb photonic crystal slabs

    Full text link
    Two-dimensional (2D) honeycomb photonic crystals with cylinders and connecting walls have the potential to have a large full band gap. In experiments, 2D photonic crystals do not have an infinite height, and therefore, we investigate the effects of the thickness of the walls, the height of the slabs and the type of the substrates on the photonic bands and gap maps of 2D honeycomb photonic crystal slabs. The band structures are calculated by the plane wave expansion method and the supercell approach. We find that the slab thickness is a key parameter affecting the band gap size while on the other hand the wall thickness hardly affact the gap size. For symmetric photonic crystal slabs with lower dielectric claddings, the height of the slabs needs to be sufficiently large to maintain a band gap. For asymmetric claddings, the projected band diagrams are similar to that of symmetric slabs as long as the dielectric constants of the claddings do not differ greatly.Comment: Accepted for publication in Journal of Applied Physic

    Ginzburg-Landau theory of dirty two band s±s_{\pm} superconductors

    Full text link
    In this paper we study the effect of non-magnetic impurities on two-band s±s_{\pm} superconductors by deriving the corresponding Ginzburg-Landau (GL) equation. Depending on the strength of (impurity-induced) inter-band scattering we find that there are two distinctive regions where the superconductors behave very differently. In the strong impurity induced inter-band scattering regime Tc<<τt−1T_c<<\tau^{-1}_t, where τt∼\tau_t\sim mean-life time an electron stays in one band the two-band superconductor behaves as an effective one-band dirty superconductor. In the other limit Tc≥τt−1T_c\geq\tau^{-1}_t, the dirty two-band superconductor is described by a network of frustrated two-band superconductor grains connected by Josepshon tunnelling junctions. We argue that most pnictide superconductors are in the later regime.Comment: 4 pages, 1 figur

    Jamming Resistant Receivers for Massive MIMO

    Full text link
    We design jamming resistant receivers to enhance the robustness of a massive MIMO uplink channel against jamming. In the pilot phase, we estimate not only the desired channel, but also the jamming channel by exploiting purposely unused pilot sequences. The jamming channel estimate is used to construct the linear receive filter to reduce impact that jamming has on the achievable rates. The performance of the proposed scheme is analytically and numerically evaluated. These results show that the proposed scheme greatly improves the rates, as compared to conventional receivers. Moreover, the proposed schemes still work well with stronger jamming power.Comment: Accepted in the 42nd IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP2017

    Spinon-Holon binding in t−Jt-J model

    Full text link
    Using a phenomenological model, we discuss the consequences of spinon-holon binding in the U(1) slave-boson approach to t−Jt-J model. Within a small xx (x=x= hole concentration) expansion, we show that spinon-holon binding produces a pseudo-gap normal state with a segmented Fermi surface and the superconducting state is formed by opening an "additional" d-wave gap on the segmented Fermi surface. The d-wave gap merge with the pseudo-gap smoothly as temperature T→0T\to0. The quasi-particles in the superconducting state are coupled to external electromagnetic field with a coupling constant of order xγx^{\gamma} where 0≤γ≤1/20\leq\gamma\leq1/2, depending on the strength of the effective spinon-holon binding potential.Comment: 9 pages, 3 figure

    In-gap bound states and tunneling conductance of multiband superconductors through a normal/superconductor/superconductor junction

    Full text link
    The tunneling conductance between a metal and a multiband s-wave superconductor with a thin layer of single-band s-wave superconductor sandwiched in between is examined in this paper. We show that an in-gap peak in conductance curve is found as a result of the formation of in-gap bound state between the single-band and multiband superconductor junctions if the phases of the superconducting order parameters of the multiband superconductor are frustrated. The implication of this result in determining the gap symmetry of the iron-based superconductors is discussed.Comment: 5 pages, 5 figure
    • …
    corecore