147 research outputs found

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies

    Full text link
    Resonance yields and spectra from elementary p+p and Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV from the STAR experiment at RHIC are presented and discussed in terms of chemical and thermal freeze-out conditions. Thermal models do not adequately describe the yields of the resonance production in central Au+Au collisions. The approach to include elastic hadronic interactions between chemical freeze-out and thermal freeze-out suggests a time of Δτ>\Delta \tau>5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic

    Identified particles at large transverse momenta in STAR in Au+Au collisions @ sqrt(s_NN) = 200 GeV

    Full text link
    We report measurements of the ratios of identified hadrons (pi,K,p,Lambda) in Au+Au collisions at sqrt(s_NN) = 200 GeV as a function of both collision centrality and transverse momentum (p_T). Ratios of anti-baryon to baryon yields are independent of p_T within 2<p_T <6 GeV/c indicating that, for such a range, our measurements are inconsistent with theoretical pQCD calculations predicting a decrease due to a stronger contribution from valence quark scattering. For both strange and non-strange species, a strong baryon enhancement relative to meson yields is observed as a function of collision centrality in this intermediate p_T region, leading to p/pi and Lambda/K ratios greater than unity. The nuclear modification factor, R_cp (central relative to peripheral collisions), is used to illustrate the interplay between jet quenching and hadron production. The physics implications of these measurements are discussed with reference to different theoretical models.Comment: 5 pages, 4 figures. Proceedings of Quark Matter 2004 Conference, Jan 2004, Oakland, USA. Submitted to Journal of Physics

    High-pTp_{T} electron distributions in d+Au and p+p collisions at RHIC

    Full text link
    We present preliminary measurements of electron and positron spectra in d+Au and p+p collisions at sNN=200\sqrt{s_{NN}}=200 GeV for 1.5<pT<7.01.5 < p_{T} < 7.0 GeV/c. These measurements were carried out using the STAR Time Projection Chamber (TPC) and the Barrel Electromagnetic calorimeter (EMC). Overall hadron rejection factors in the range of 10510^{5} have been achieved. In this work we describe the measurement technique used to discriminate electrons from hadrons and compare the results for single electron spectra with Pythia based pQCD calculations for electrons from heavy-quark semi-leptonic decays.Comment: Quark Matter 2004 conference proceeding

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio
    corecore