6 research outputs found

    Application of an optimum design of cooling water system by regeneration concept and Pinch Technology for water and energy conservation

    No full text
    In this study, using a combination of Pinch Technology and Mathematical Programming, a new technique is presented in order to grass-root design for a cooling water system to achieve minimum total annual cost. The presented technique is further improved by using patterns from the concept of regeneration recycling in water systems: in a sense that cooling water is regenerated locally by an air cooler. Moreover, in the proposed method, optimum design of cooling tower has been achieved through a mathematical model. Related coding in MATLAB version 7.3 was used for the illustrative example to get optimal values in the proposed cooling water design method computations. The result of the recently introduced design methodology was compared with the conventional and Kim and Smith design methods. The outcomes indicate that by using this new design method, more water and energy can be saved and a lower level of total annual cost can be reached. © 2009 Asian Network for Scientific Information

    New Method for Designing an Optimum Distributed Cooling System for Effluent Thermal Treatment

    No full text
    Temperature restrictions on aqueous effluents dictate that streams with a temperature higher than the permitted level needed to pass through cooling systems to reduce the effluent temperature before discharge. In this study, by considering the grouping design rules based on pinch technology, an optimum design for a distributed effluent cooling system, has been developed. A counter-flow wet cooling tower, with a mechanical air draft, is also assumed as an effluent thermal treatment facility in predicting the exit water and air conditions of the tower in the system. In this new design method, an optimum inlet flow rate to cooling tower has been achieved by exploring the feasible region. Also, the evaporation loss effect, flexible design variables, and physical properties have been incorporated in targeting the optimal conditions for the cooling tower. A case study is presented to illustrate the design methodology and the optimization model of cooling systems
    corecore