2 research outputs found

    Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture

    Get PDF
    Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive physiology has not been discovered yet in the sub-tropical climatic conditions. In this study, we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet under a gradient of salinity in the soil-pot culture system to evaluate its adaptive mechanisms. Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis, and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our findings provide insights into the mild-moderate salt adaptation strategy in the soil culture test attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis, and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately saline-affected soils will ensure efficient utilization of lands

    Crop improvement and abiotic stress tolerance promoted by moringa leaf extract

    Get PDF
    Moringa leaf extract (MLE) has been shown to promote beneficial outcomes in animals and plants. It is rich in amino acids, antioxidants, phytohormones, minerals, and many other bioactive compounds with nutritional and growth-promoting potential. Recent reports indicated that MLE improved abiotic stress tolerance in plants. Our understanding of the mechanisms underlying MLE-mediated abiotic stress tolerance remains limited. This review summarizes the existing literature on the role of MLE in promoting plant abiotic stress acclimation processes. MLE is applied to plants in a variety of ways, including foliar spray, rooting media, and seed priming. Exogenous application of MLE promoted crop plant growth, photosynthesis, and yield under both nonstress and abiotic stress conditions. MLE treatment reduced the severity of osmotic and oxidative stress in plants by regulating osmolyte accumulation, antioxidant synthesis, and secondary metabolites. MLE also improves mineral homeostasis in the presence of abiotic stress. Overall, this review describes the potential mechanisms underpinning MLE-mediated stress tolerance
    corecore