4 research outputs found

    Fairness through Aleatoric Uncertainty

    Full text link
    We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning

    Exploring Musical, Lyrical, and Network Dimensions of Music Sharing Among Depression Individuals

    Full text link
    Depression has emerged as a significant mental health concern due to a variety of factors, reflecting broader societal and individual challenges. Within the digital era, social media has become an important platform for individuals navigating through depression, enabling them to express their emotional and mental states through various mediums, notably music. Specifically, their music preferences, manifested through sharing practices, inadvertently offer a glimpse into their psychological and emotional landscapes. This work seeks to study the differences in music preferences between individuals diagnosed with depression and non-diagnosed individuals, exploring numerous facets of music, including musical features, lyrics, and musical networks. The music preferences of individuals with depression through music sharing on social media, reveal notable differences in musical features and topics and language use of lyrics compared to non-depressed individuals. We find the network information enhances understanding of the link between music listening patterns. The result highlights a potential echo-chamber effect, where depression individual's musical choices may inadvertently perpetuate depressive moods and emotions. In sum, this study underscores the significance of examining music's various aspects to grasp its relationship with mental health, offering insights for personalized music interventions and recommendation algorithms that could benefit individuals with depression.Comment: arXiv admin note: text overlap with arXiv:2007.03137, arXiv:2205.03459 by other author

    Distributional Shift Adaptation using Domain-Specific Features

    Full text link
    Machine learning algorithms typically assume that the training and test samples come from the same distributions, i.e., in-distribution. However, in open-world scenarios, streaming big data can be Out-Of-Distribution (OOD), rendering these algorithms ineffective. Prior solutions to the OOD challenge seek to identify invariant features across different training domains. The underlying assumption is that these invariant features should also work reasonably well in the unlabeled target domain. By contrast, this work is interested in the domain-specific features that include both invariant features and features unique to the target domain. We propose a simple yet effective approach that relies on correlations in general regardless of whether the features are invariant or not. Our approach uses the most confidently predicted samples identified by an OOD base model (teacher model) to train a new model (student model) that effectively adapts to the target domain. Empirical evaluations on benchmark datasets show that the performance is improved over the SOTA by ~10-20

    Exploring Platform Migration Patterns between Twitter and Mastodon: A User Behavior Study

    Full text link
    A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study
    corecore