26 research outputs found
Ionic Conductivities of Molten CuI and AgI-CuI Mixtures
Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration
Structure and Ionic Diffusion in Molten NaI, RbI, and NaI-RbI mixture
Static structure factors of molten NaI, RbI, and their mixture of (RbI)0.3(NaI)0.7 are measured up to high-Q region by using the high-energy Xray diffraction technique. Moreover, molecular dynamics (MD) simulations are carried out, and the simulation results well reproduce the diffraction data. The partial structure factors, partial pair distribution functions, and ionic diffusion coefficients calculated by the MD simulations are reported in detail. The mixing effects of cations on the structure and ionic diffusion are also discussed
Controlling oxygen coordination and valence of network forming cations
Understanding the structure-property relationship of glass material is still challenging due to a lack of periodicity in disordered materials. Here, we report the properties and atomic structure of vanadium phosphate glasses characterized by reverse Monte Carlo modelling based on neutron/synchrotron X-ray diffraction and EXAFS data, supplemented by Raman and NMR spectroscopy. In vanadium-rich glass, the water durability, thermal stability and hardness improve as the amount of P2O5 increases, and the network former of the glass changes from VOx polyhedra to the interplay between VOx polyhedra and PO4 tetrahedra. We find for the first time that the coordination number of oxygen atoms around a V4+ is four, which is an unusually small coordination number, and plays an important role for water durability, thermal stability and hardness. Furthermore, we show that the similarity between glass and crystal beyond the nearest neighbour distance is important for glass properties. These results demonstrate that controlling the oxygen coordination and valence of the network-forming cation is necessary for designing the properties of glass
Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge) alloys
For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge) was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature
Structural Analysis of Molten NaNO 3
MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O− ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 − plannar ionic molecules has also been investigated
Structure and properties of densified silica glass: characterizing the order within disorder
世界一構造秩序のあるガラスの合成と構造解析に成功 --ガラスの一見無秩序な構造の中に潜む秩序を抽出--. 京都大学プレスリリース. 2021-12-25.The broken symmetry in the atomic-scale ordering of glassy versus crystalline solids leads to a daunting challenge to provide suitable metrics for describing the order within disorder, especially on length scales beyond the nearest neighbor that are characterized by rich structural complexity. Here, we address this challenge for silica, a canonical network-forming glass, by using hot versus cold compression to (i) systematically increase the structural ordering after densification and (ii) prepare two glasses with the same high-density but contrasting structures. The structure was measured by high-energy X-ray and neutron diffraction, and atomistic models were generated that reproduce the experimental results. The vibrational and thermodynamic properties of the glasses were probed by using inelastic neutron scattering and calorimetry, respectively. Traditional measures of amorphous structures show relatively subtle changes upon compacting the glass. The method of persistent homology identifies, however, distinct features in the network topology that change as the initially open structure of the glass is collapsed. The results for the same high-density glasses show that the nature of structural disorder does impact the heat capacity and boson peak in the low-frequency dynamical spectra. Densification is discussed in terms of the loss of locally favored tetrahedral structures comprising oxygen-decorated SiSi4 tetrahedra
Ionic Conductivities of Molten CuI and AgI-CuI Mixtures
Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration
Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge) alloys
For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge) was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature
Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge) alloys
For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge) was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature