22 research outputs found

    Distribution of FMRFamide-like immunoreactivity in the alimentary tract and hindgut ganglia of the barnacle Balanus amphitrite (Cirripedia, Crustacea)

    No full text
    In this study, the presence and distribution of FMRFamide-like immunoreactivity in the alimentary tract of barnacle Balanus amphitrite were investigated. A net of nerve fibers strongly immunoreactive to FMRFamide-like molecules was localized in the posterior midgut and hindgut. Positive varicose nerve terminals were also localized close to the circular muscle cells and, in the hindgut, close to the radial muscular fibers. Besides this nerve fibers network, one pair of contralateral ganglia was localized in the hindgut, each of them constituted by two strongly FMRFamide-labeled neurons and one nonlabeled neuron. Their immunoreactive axons directed toward the hindgut and posterior midgut suggest an involvement of FMRFamide-like substances in adult B. amphitrite gut motility. The hindgut associated ganglia of barnacles seem to correspond to the terminal abdominal ganglia of the other crustaceans. Since they are the only residual gut ganglia in the barnacle's reduced nervous system, we can hypothesize that gut motility needs a nervous system regulation partially independent of the central nervous system

    FMRFamide-like immunoreactivity in the sea-fan Eunicella cavolini (Cnidaria: Octocorallia)

    No full text
    The presence of FMRFamide-related peptides (FaRPs) was investigated, by immunohistochemical methods with a polyclonal FMRFamide antiserum, in the sea-fan Eunicella cavolini (Van Koch 1887), a representative of the cnidarians (octocorallians). The identification of FaRP-immunoreactive elements as neuronal cells and a nerve net was performed by double immunohistochemical methods with the monoclonal anti-beta-tubulin antibody. A strong and widely distributed FaRPs immunoreactivity was detected: FaRPs-immunoreactive nerve cells were observed among and underlying gastrodermal epithelial cells, epidermal cells lining tentacles, muscular septs and gonophores. A diffuse FaRPs-immunoreactive nerve net was also found between epithelia and mesoglea and in the stalk of the gonophore. These results improve our knowledge of the gorgonian nervous system and demonstrate that most of the immunoreactive cells belong to neural elements

    Cell proliferation and apoptosis in the olfactory epithelium of the shark Scyliorhinus canicula

    No full text
    To date, no study has been published on cell renewal in the olfactory epithelium of Chondrichthyes. Our work aimed at detecting proliferating cells (by Proliferating Cell Nuclear Antigen \u2013 PCNA immunohistochemistry) and apoptotic cells (by terminal uridine deoxynucleotidyl transferase nick end labeling method) in the olfactory epithelium of the shark Scyliorhinus canicula. PCNA immunoreactivity and mitotic figures were localized almost exclusively at the basal and apical thirds of the epithelial thickness. Double immunofluorescence for PCNA and OMP (a marker of mature olfactory neurons) showed that PCNA immunoreactivity is lacking in mature olfactory neurons, with the exception of crypt neurons. Crypt neurons, a cell type peculiar to fish, often showed PCNA immunoreactivity in the nucleus and may be involved in repair processes. The role of PCNA in mature crypt neurons requires further investigation to be clarified. Apoptosis was observed in sensory neurons and in basal cells. Our data highlight the presence of cell proliferation at different levels within the epithelium and the occurrence of apoptosis in both mature and proliferating cells

    Leptin-like immunoreactivity in the muscle of juvenile sea bass (Dicentrarchus labrax)

    No full text
    The mammalian hormone, leptin, is mainly synthesized in adipose tissue along with other tissues. Leptin plays a role in numerous processes such as in the control of food intake, homeostasis, immune function and reproduction. In this study, we detected and localized leptin im- munoreactivity to the muscle of early juvenile sea bass (Dicentrarchus labrax) by Western blot analysis and immunohistochemistry. A leptin immunopositive band with a molecular weight of $16 kDa, corresponding to mammalian leptin, was identified in trunk skeletal muscle homogenate. Furthermore, leptin immunopositive cells were detected in the endomysium of skeletal muscular fibers. These cells showed immunostained cytoplasmic granules and roundish and oval nuclei. The most intense immunostaining was observed in the endomysial space among the superficial red muscular fibers of the trunk. These findings suggest that in early juvenile sea bass, leptin is mostly produced by skeletal muscles. Therefore, during the developmental stage lacking adipose tissue, skeletal muscles can be considered an important source of leptin. As already suggested in mam- mals, we can hypothesize the potential roles of leptin not only in energy expenditure for muscle contraction but also during muscle differentiation and growth

    Effects of Nanosilver Exposure on Cholinesterase Activities, CD41, and CDF/LIF-Like Expression in ZebraFish (Danio rerio) Larvae

    Get PDF
    Metal nanosolicoparticles are suspected to cause diseases in a number of organisms, including man. In this paper, we report the effects of nanosilver (Ag, 1–20 nm particles) on the early development of the zebrafish, a well-established vertebrate model. Embryos at the midgastrula stage were exposed to concentrations ranging from 100 to 0.001 mg/L to verify the effects on different endpoints: lethality, morphology, expression of cholinergic molecules, and development of the immune system. (1) Relative risk of mortality was exponential in the range between 0.001 and 10 mg/L. Exposure to 100 mg/L caused 100% death of embryos before reaching the tail-bud stage. (2) Developmental anomalies were present in the 72 h larvae obtained from embryos exposed to nanosilver: whole body length, decreased eye dimension, and slow response to solicitation by gentle touch with a needle tip, with a significant threshold at 0.1 mg/L. (3) Dose-dependent inhibition of acetylcholinesterase activity was significant among the exposures, except between 1 mg/L and 10 mg/L. (4) The distribution of CD41+ cells and of CDF/LIF-like immunoreactivity was altered according to the Ag concentration. The possible effect of nanosilver in impairing immune system differentiation through the inhibition of molecules related to the cholinergic system is discussed
    corecore