4 research outputs found

    Effect of Thermal Exposure on Oil Shale Saturation and Reservoir Properties

    No full text
    The experimental and numerical modeling of thermal enhanced oil recovery (EOR) requires a detailed laboratory analysis of core properties influenced by thermal exposure. To acquire the robust knowledge on the change in rock saturation and reservoir properties, the fastest way is to examine the rock samples before and after combustion. In the current paper, we studied the shale rock properties, such as core saturation, porosity, and permeability, organic matter content of the rock caused by the combustion front propagation within the experimental modeling of the high-pressure air injection. The study was conducted on Bazhenov shale formation rock samples. We reported the results on porosity and permeability evolution, which was obtained by the gas pressure-decay technique. The measurements revealed a significant increase of porosity (on average, for 9 abs. % of porosity) and permeability (on average, for 1 mD) of core samples after the combustion tube experiment. The scanning electron microscopy showed the changes induced by thermal exposure: the transformation of organic matter with and the formation of new voids and micro and nanofractures in the mineral matrix. Low-field Nuclear Magnetic Resonance (NMR) was chosen as a primary non-disruptive tool for measuring the saturation of core samples in ambient conditions. NMR T1–T2 maps were interpreted to determine the rock fluid categories (bitumen and adsorbed oil, structural and adsorbed water, and mobile oil) before and after the combustion experiment. Changes in the distribution of organic matter within the core sample were examined using 2D Rock-Eval pyrolysis technique. Results demonstrated the relatively uniform distribution of OM inside the core plugs after the combustion

    Investigation of Source Rock Heating and Structural Changes in the Electromagnetic Fields Using Experimental and Mathematical Modeling

    No full text
    The paper presents the results of an experimental study of heating and the structural resultant changes of source rocks under the influence of the electromagnetic field in the microwave and radio-frequency ranges. The samples from the Bazhenov Formation (West Siberia, Russia) and the Domanic Formation (Ural, Russia) have been tested. It is shown that samples from these formations demonstrate very different heating rates at the same electromagnetic field parameters and the their heating rate depends on the type of the electromagnetic field (radio-frequency or microwave) applied. The temperature of the Bazhenov Formation samples reaches 300 °C within one hundred seconds of the microwave treatment but it slowly rises to 200 °C after twelve minutes of the radio-frequency influence. The samples of the carbonate Domanic Formation heat up more slowly in the microwave field (within two hundred seconds) and to lower temperatures in the radio-frequency (150 °C) than the Bazhenov Formation samples. The study of the structure of the samples before and after experiments on the electromagnetic treatment shows fracture formation during the heating process. Numerical simulations of heating dynamics of source rock samples have been based on a simple mathematical model of the electromagnetic influence and main features of heating for different types of source rock have been revealed. The opportunities for application of electromagnetic heating for oil source rock recovery are discussed

    Alterations of Carbonate Mineral Matrix and Kerogen Micro-Structure in Domanik Organic-Rich Shale during Anhydrous Pyrolysis

    No full text
    The study of organic-rich carbonate-containing shales after heating is an important task for the effective application of in-situ thermal kerogen conversion technologies implemented for these types of rocks. This research was conducted to study changes in the rocks of the Domanik Formation after high-temperature treatment, taking into account the nature of structural changes at the micro level and chemical transformations in minerals. The sample of organic-rich carbonate-containing shales of the Domanik Formation was treated in stages in a pyrolizer in an inert atmosphere in the temperature range of 350–800 °C for 30 min at each temperature. By means of X-ray powder diffractometry (XRPD), HAWK pyrolysis, light and scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and computed micro-tomography, the characteristics of the rock before and after each heating stage were studied. The results showed significant alteration of the mineral matrix in the temperature range 600–800 °C, including the decomposition of minerals with the formation of new components, and structural alterations such as fracturing micropore formation. The organic matter (OM) was compacted at T = 350–400 °C and fractured. The evolution of void space includes fracture formation at the edges between rock components, both in organic matter and in minerals, as well as nanopore formation inside the carbonate mineral matrix. The results obtained show what processes at the microlevel can occur in carbonate-containing organic-rich shales under high-temperature treatment, and how these processes affect changes in the microstructure and pore space in the sample. These results are essential for modeling and the effective application of thermal EOR in organic-rich shales

    Alterations of Carbonate Mineral Matrix and Kerogen Micro-Structure in Domanik Organic-Rich Shale during Anhydrous Pyrolysis

    No full text
    The study of organic-rich carbonate-containing shales after heating is an important task for the effective application of in-situ thermal kerogen conversion technologies implemented for these types of rocks. This research was conducted to study changes in the rocks of the Domanik Formation after high-temperature treatment, taking into account the nature of structural changes at the micro level and chemical transformations in minerals. The sample of organic-rich carbonate-containing shales of the Domanik Formation was treated in stages in a pyrolizer in an inert atmosphere in the temperature range of 350–800 °C for 30 min at each temperature. By means of X-ray powder diffractometry (XRPD), HAWK pyrolysis, light and scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and computed micro-tomography, the characteristics of the rock before and after each heating stage were studied. The results showed significant alteration of the mineral matrix in the temperature range 600–800 °C, including the decomposition of minerals with the formation of new components, and structural alterations such as fracturing micropore formation. The organic matter (OM) was compacted at T = 350–400 °C and fractured. The evolution of void space includes fracture formation at the edges between rock components, both in organic matter and in minerals, as well as nanopore formation inside the carbonate mineral matrix. The results obtained show what processes at the microlevel can occur in carbonate-containing organic-rich shales under high-temperature treatment, and how these processes affect changes in the microstructure and pore space in the sample. These results are essential for modeling and the effective application of thermal EOR in organic-rich shales
    corecore