14 research outputs found

    Metabolomic profile, anti-trypanosomal potential and molecular docking studies of <i>Thunbergia grandifolia</i>

    Get PDF
    Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 Όg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves

    Diclofenac and Meloxicam Exhibited Anti-Virulence Activities Targeting Staphyloxanthin Production in Methicillin-Resistant <i>Staphylococcus aureus</i>

    No full text
    Staphylococcus aureus (S. aureus) is a worldwide leading versatile pathogen that causes a wide range of serious infections. The emergence of antimicrobial resistance against S. aureus resulted in an urgent need to develop new antimicrobials in the new era. The methicillin-resistant S. aureus (MRSA) prevalence in hospital and community settings necessitates the discovery of novel anti-pathogenic agents. Staphyloxanthin (STX) is a key virulence factor for the survival of MRSA against host innate immunity. The current work aimed to demonstrate the anti-virulence properties of meloxicam (MXM) as compared to diclofenac (DC), which was previously reported to mitigate the virulence of multidrug-resistant Staphylococcus aureus and test their activities in STX production. A total of 80 S. aureus clinical isolates were included, wherein a qualitative and quantitative assessment of STX inhibition by diclofenac and meloxicam was performed. The quantitative gene expression of STX biosynthetic genes (crtM, crtN and sigB) and hla (coded for α-hemolysin) as a virulence gene with and without DC and MXM was conducted, followed by molecular docking analysis for further confirmation. DC and MXM potently inhibited the synthesis of STX at 47 and 59 ”g/mL to reach 79.3–98% and 80.6–96.7% inhibition, respectively. Treated cells also revealed a significant downregulation of virulence genes responsible for STX synthesis, such as crtM, crtN and global transcriptional regulator sigB along with the hla gene. Furthermore, computational studies unveiled strong interactions between the CrtM binding site and DC/MXM. In conclusion, this study highlights the potential role and repurposing of DC and MXM as adjuvants to conventional antimicrobials and as an anti-virulent to combat MRSA infections

    Diclofenac and Meloxicam Exhibited Anti-Virulence Activities Targeting Staphyloxanthin Production in Methicillin-Resistant Staphylococcus aureus

    No full text
    Staphylococcus aureus (S. aureus) is a worldwide leading versatile pathogen that causes a wide range of serious infections. The emergence of antimicrobial resistance against S. aureus resulted in an urgent need to develop new antimicrobials in the new era. The methicillin-resistant S. aureus (MRSA) prevalence in hospital and community settings necessitates the discovery of novel anti-pathogenic agents. Staphyloxanthin (STX) is a key virulence factor for the survival of MRSA against host innate immunity. The current work aimed to demonstrate the anti-virulence properties of meloxicam (MXM) as compared to diclofenac (DC), which was previously reported to mitigate the virulence of multidrug-resistant Staphylococcus aureus and test their activities in STX production. A total of 80 S. aureus clinical isolates were included, wherein a qualitative and quantitative assessment of STX inhibition by diclofenac and meloxicam was performed. The quantitative gene expression of STX biosynthetic genes (crtM, crtN and sigB) and hla (coded for &alpha;-hemolysin) as a virulence gene with and without DC and MXM was conducted, followed by molecular docking analysis for further confirmation. DC and MXM potently inhibited the synthesis of STX at 47 and 59 &micro;g/mL to reach 79.3&ndash;98% and 80.6&ndash;96.7% inhibition, respectively. Treated cells also revealed a significant downregulation of virulence genes responsible for STX synthesis, such as crtM, crtN and global transcriptional regulator sigB along with the hla gene. Furthermore, computational studies unveiled strong interactions between the CrtM binding site and DC/MXM. In conclusion, this study highlights the potential role and repurposing of DC and MXM as adjuvants to conventional antimicrobials and as an anti-virulent to combat MRSA infections

    Phytochemical profiling and mechanistic evaluation of black garlic extract on multiple sclerosis rat model

    No full text
    Black garlic aqueous-ethanol extract (BGE) was evaluated for its antioxidant and anti-inflammatory effects in multiple sclerosis induced-rat model. It was also analyzed using high-performance liquid chromatography-mass spectrometry (HPLC-MS), where fifteen compounds were identified, as aminobutyric acid and S-allyl-cysteine. The extract was standardized to citric acid content (4.77 mg/g extract), and its hexane fraction was analyzed by gas chromatography-mass spectrometry (GC-MS), revealing mainly methyl 9E,12E-octadecadienoate, and ethyl palmitate. BGE administration in MS-induced groups showed significant amelioration in biochemical parameters through ELISA assessment of brain IL-10, TNF, α-2 macroglobulin, ERK1, ERK2, MAP2, MBP, and Nrf2 markers; decreased pro-inflammatory markers and elevated antioxidant parameters. Histopathological assessment of BGE-receiving rats’ brains showed less demyelination, and enhanced cognition. A molecular docking study showed that Îł-glutamyl-S-methyl-cysteine sulfoxide, S-allyl cysteine, aminobutyric acid, and palmitic acid ethyl ester have good affinities to inducible nitric oxide synthase (iNOS). BG can be further investigated for beneficial potential in MS disease

    Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis.

    No full text
    We describe the design and synthesis of two isatin-tethered quinolines series (Q6a-h and Q8a-h), in connection with our research interest in developing novel isatin-bearing anti-tubercular candidates. In a previous study, a series of small molecules bearing a quinoline-3-carbohydrazone moiety was developed as anti-tubercular agents, and compound IV disclosed the highest potency with MIC value equal to 6.24 ”g/mL. In the current work, we adopted the bioisosteric replacement approach to replace the 3,4,5-trimethoxy-benzylidene moiety in the lead compound IV with the isatin motif, a privileged scaffold in the TB drug discovery, to furnish the first series of target molecules Q6a-h. Thereafter, the isatin motif was N-substituted with either a methyl or benzyl group to furnish the second series Q8a-h. All of the designed quinoilne-isatin conjugates Q6a-h and Q8a-h were synthesized and then biologically assessed for anti-tubercular actions towards drug-susceptible, MDR, and XDR strains. Superiorly, the N-benzyl-bearing compound Q8b possessed the best activities against the examined M. tuberculosis strains with MICs equal 0.06, 0.24, and 1.95 ”g/mL, respectively

    Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics

    No full text
    Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives globally. The condition has a high occurrence rate and is the second leading cause of mortality after cardiovascular disorders. Increased research and more profound knowledge of the mechanisms contributing to the disease’s onset and progression have led to drug discovery and development. Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance. The other major problem is the side effects of these drugs. Therefore, using complementary and additional medicines from natural sources is the best strategy to overcome these issues. The naturally occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis, the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer agents, the mode of action of phytochemicals, and their role in various types of cancer

    Chemical composition, seasonal variation and antiaging activities of essential oil from Callistemon subulatus leaves growing in Egypt

    No full text
    AbstractCallistemon is an aromatic genus of flowering plants belonging to family Myrtaceae. The essential oils of C. subulatus leaves were collected in four seasons and analyzed using GC/MS. The oils demonstrated monoterpenes as the predominant class. Eucalyptol was the main component in all seasons; summer (66.87%), autumn (58.33%), winter (46.74%) and spring (44.63%), followed by α-pinene; spring (31.41%), winter (28.69%), summer (26.34%) and autumn (24.68%). Winter oil, the highest yield (0.53 mL/100g), was further investigated for its inhibitory activity against enzymes associated with ageing; elastase and acetylcholinesterase. It remarkably inhibited elastase and acetylcholinesterase with IC50 values of 1.05 and 0.20 ”g/ml, respectively. A molecular docking study was conducted for the major oil components on the active sites of target enzymes. Eucalyptol revealed the best binding affinity for both enzymes. C. subualtus oil could be used as supplement for management of ageing disorders like skin wrinkles and dementia

    Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFRWT and EGFRT790M inhibitors

    No full text
    AbstractHerein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates
    corecore