29 research outputs found

    Relación entre la composición química corporal, la fertilidad y la prolificidad en conejas primíparas.

    Get PDF
    En este trabajo se ha estudiado el efecto de la composición química corporal, estimada mediante el método de impedancia bioeléctrica (BIA) en la primera y segunda inseminación artificial (IA), sobre la fertilidad y la prolificidad de conejas primíparas. Se utilizaron los datos de 137 conejas procedentes de dos granjas que utilizaban dos genéticas distintas (UPV e Hyplus) y tres ritmos reproductivos (R4: inseminación a los 4 días tras el parto y destete a los 28 días, R11: inseminación a los 11 días postparto y destete a 35 días y R14: inseminación a los 14 días tras el parto y destete a los 42 días). La fertilidad media observada en el segundo parto fue de un 56,2% y el porcentaje de nacidos vivos, sobre los nacidos totales, fue de un 87,5%, no encontrándose diferencias entre los ritmos utilizados. El aumento de la proporción de proteína corporal, grasa y energía en la primera IA tuvieron un efecto positivo (P=0,007; P=0,03 y P<0,001, respectivamente) sobre la fertilidad del segundo parto. Igualmente, un mayor contenido en grasa (P<0,001) y energía (P<0,001) en la segunda IA también incrementaron la fertilidad del segundo parto. El incremento del ratio proteína/energía corporal de las conejas, determinado en las dos IA, tuvo un efecto negativo sobre la fertilidad en el segundo parto (P<0,001), observándose mejores resultados en conejas con 12 g proteína/MJ respecto a otras con valores superiores. El porcentaje de nacidos vivos (P<0,001), sobre los nacidos totales, aumentó con la proporción de proteína de las conejas en el momento de la segunda IA, pero esta última no tuvo efecto sobre la fertilidad. This study evaluated the effect of chemical body composition at first and second artificial inseminations (AI), determined by bioelectric impedance technique (BIA), on fertility and prolificacy of primiparous rabbit does. Data of 137 does from two farms using two different genetics (UPV and Hyplus) and three breeding systems were analyzed. Fertility was 56.2 % and the percentage of kits born alive over total born was 87.5 %. Breeding system had no effect on fertility or the percentage of kits born alive. Higher body protein, fat and energy of the rabbit doe at first artificial insemination (AI) increased the fertility in the second parity (P=0.007, P=0.03 and P<0.001 respectively). Fat and energy content of the doe at the second AI affected positively fertility in the second parity (P<0.001 and P<0.001 respectively), while protein influenced positively only prolificacy (P<0.001). The increase of the ratio protein/energy in both AI moments had a negative influence on fertility in the second parity (P<0.001), rabbit does with 12 g protein/MJ showed a higher fertility than those with higher value

    Genetic variability in agro-morphological and quality traits of Mediterranean durum wheat landraces

    Get PDF
    Durum wheat landraces are still cultivated to take advantage of their excellent grain and straw quality, adaptation to abiotic stresses, and extremely wide variety of uses. The safeguarding and rehabilitation of genetic inheritance requires genetic characterization and evaluation. In this study, forty durum wheat landraces originating from Mediterranean countries were evaluated according to agro-morphological and technological properties. We show that the germplasm was highly variable. The mean yellow pigment and protein content was higher in landraces (15.58%; 7.32 ppm) than in the Moroccan cultivars used as controls (14.6%; 5.48 ppm). In addition, principal component analysis identified five groups showing variable agronomic and qualitative characteristics that might be useful in the rational design of breeding programs

    Genetic gain of grain yield and quality in bread wheat cultivars representing 40 years of breeding in Morocco

    Get PDF
    Background. Knowledge about the genetic gain for fundamental traits over time is essential for a critical assessment and improvement of breeding programs, especially regarding staple crops like bread wheat.Materials and methods. To estimate the genetic gain in bread wheat breeding in Morocco, grain yield (GY) and grain protein content (GPC) data were collected from 12 multi-environment field trials for 20 bread wheat cultivars released between 1980 and 2022.Results and discussion. Analysis of variance highlighted a high significant variability between environments (E), cultivars (G), and a significant G × E interaction (P &lt; 0.001). Based on stability analysis, the modern cultivars released during the two last decades (2002–2012 and 2013–2022) showed the highest performances and wider stability than old ones, especially in low-yielding environments. Genetic gain (GG) for GY was 21.4 kg ha−1 yr−1 (0.75% yr–1) over 4 decades of breeding. This progress was declining when advancing in decades and ranged from 11% (from 1980–1990 to 1991–2001) to less than 7% (from 2002–2012 to 2013–2022). The GG in low and intermediate yielding environments were the most important (17.34% and 6.88% yr–1 respectively), while GG was nonsignificant in high-yielding environments (4.62% yr–1). Within the same period, GPC showed a nonsignificant negative trend of –0.007% (–0.002% yr–1), while derivative parameters from GY and GPC indicated high positive genetic progress. More efforts should be deployed to implement a good balance between yield performance and quality in the new released cultivars despite the negative correlation between these two traits (r = –0.36; P &lt; 0.001).Conclusion. Adopting advanced technologies, like genomic selection, adequate agronomic practices, and more efficient selection criteria are essential steps to further increase simultaneously grain yield and quality traits

    Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different environments

    Get PDF
    The quality traits of durum wheat are important for the utilization by the industries. These traits may be influenced by genotype and interaction of genotype and environment (GxE). To evaluate the effects of genotype, environment and genotype x environment interaction on quality traits such as vitreousness, SDS sedimentation test, yellow pigment index, protein content and test weight, twelve Moroccan durum wheat cultivars representing a range of agronomic adaptation were tested in five locations representing a range of environments in three growing seasons. The results indicated significant effects of genotype, environment and GxE for all the quality traits. The extent of these effects differed; for SDSsedimentation volumes, yellow pigment and test weight, the component of variation due to genotype was larger than due to the environment, indicating the greater influence of genotypes on these traits. However, for vitreousness and protein content, the effect of environment was higher than the effect due to genotypes. Thus, these traits are controlled greatly by environmental effects than genetics. The variation due to GxE was higher than that of genotype for vitreousness and test weight, indicating high GxE interaction effect and less genotypic stability for these traits. For protein content, where the environmental effect was greater than that of genotype and GxE effect, multiple environmental trials are necessary in order to determine protein content of a cultivar. For other traits,&#160; preliminary evaluations can be done in one environment and good performing ones can be selected for multiple environmental trials

    Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees

    Get PDF
    Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1)

    Relación entre la composición química corporal, la fertilidad y la prolificidad en conejas nulíparas.

    Get PDF
    En los sistemas actuales de manejo de conejas reproductoras, la primera inseminación artificial (IA) se realiza a una edad fija sin tener en cuenta la composición corporal ni el peso. Por lo cual, en el momento de la IA se observan generalmente diferencias de peso entre las conejas de un mismo sistema de recría (Rommers et al., 2002) y de la composición corporal (Rebollar et al., 2011). Este trabajo pretende evaluar el efecto de la composición química corporal y el peso en conejas nulíparas sobre su fertilidad y su prolificidad en el primer part

    Study of the agro-morphological and technological genetic variability of the Mediterranean populations of durum wheat

    Full text link
    Durum wheat (Triticum turgidum var. Durum) is the third mostly grown crop in the world and second in Morocco. This work aims to study the influence the genetic and the environmental effect on the adaptation, the yield and its components and on the grain quality of two durum wheat populations (76 durum accessions and 120 Recombinant Inbred Lines (RILs)). Two trials were installed in two INRA experimental stations, namely Sidi El Aidi (Settat) and Merchouch (Rabat). Several measurements on growth and phenological stages were carried out and analyzed and quality traits were measured in laboratory after harvest. The Principal Components Analysis (ACP) was performed to relate phenological traits and grain quality traits among RILs and accessions. Analysis of certain aspects of quality (Dodecyl Sodium Sulphates (SDS), Vitreousness Rate (TV), Yellow Index (IJ) and Ash content (TC) also allowed to detect an important and similar variability for the two populations. The electrophoresis analysis showed that 58% from the accessions and 62% of RILs present a good gluten force. Moreover, there were correlations between these characters on the one hand, and these characters and the agromorphologic characters on the other hand. A great multi-axis variability was observed which can serve as a base for new variation. This variation is controlled by many useful genes which can be used in durum wheat programs to release new varieties adapted to Moroccan environment and presenting good quality genes for durum wheat
    corecore