6 research outputs found

    Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    No full text
    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200MeV, which has a range of ∼ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3% (1\u27σ) and 5% (1\u27σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy

    First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera

    No full text
    In the field of nuclear medicine, single photon emission tomography and positron emission tomography are the two most common techniques in molecular imaging, but the available radioactive tracers have been limited either by energy range or difficulties in production and delivery. Thus, the use of a Compton camera, which features gamma-ray imaging of arbitrary energies from a few hundred keV to more than MeV, is eagerly awaited along with potential new tracers which have never been used in current modalities. In this paper, we developed an ultra-compact Compton camera that weighs only 580 g. The camera consists of fine-pixelized Ce-doped Gd3Al2Ga3O12 scintillators coupled with multi-pixel photon counter arrays. We first investigated the 3-D imaging capability of our camera system for a diffuse source of a planar geometry, and then conducted small animal imaging as pre-clinical evaluation. For the first time, we successfully carried out the 3-D color imaging of a live mouse in just 2 h. By using tri-color gamma-ray fusion images, we confirmed that 131I, 85Sr, and 65Zn can be new tracers that concentrate in each target organ

    Ultracompact Compton Camera for Innovative Gamma-ray Imaging

    No full text
    A multipixel photon counter (MPPC) features excellent photon-counting capability as a radiation detector. In particular, a two-plane Compton camera consisting of Ce:GAGG scintillators coupled with MPPC arrays has significant application potential owing to its compact size and low weight. For example, the camera can be easily mounted on a commercial drone to identify radiation hot spots from the sky. In Fukushima, we demonstrated that a Cs-137 distribution within a 100 m diameter can be mapped correctly within a couple of tens of minutes. The advanced use of the Compton camera is also anticipated in the field of proton therapy. We evaluated an image of 511 keV annihilation gamma-rays emitted from a PMMA phantom irradiated by 200 MeV protons to mimic an in-beam monitor for proton therapy. Finally, we developed an ultracompact Compton camera (weight = 580 g), for 3-D multicolor molecular imaging. In order to demonstrate the performance capabilities of the device, I-131 (365 keV) , Sr-85 (SrCl2, 514 keV), and Zn-65 (ZnCl2, 1116 keV) were injected into a living mouse and the data were taken from 12 angles with a total acquisition time of 2 h. We confirmed that all tracers had accumulated on the target organs of the thyroid, bone, and liver, and that the obtained 3-D image was quantitatively correct with an accuracy of ±20%
    corecore