8 research outputs found

    p21 provides stage specific DNA damage control to preimplantation embryos

    No full text
    The early stage embryogenesis of higher eukaryotes lacks some of the damage response pathways such as G1/S checkpoint, G2/M checkpoint and apoptosis. We examined here the damage response of preimplantation stage embryos after fertilization with 6 Gy irradiated sperm. Sperm-irradiated embryos developed normally for the first 2.5 days, but started to exhibit a developmental delay at day 3.5. p21 was activated in the delayed embryos, which carried numerous micronuclei owing to delayed chromosome instability. Apoptosis was observed predominantly in the inner cell mass of the day 4.0 embryos. Sperm-irradiated p21-/- embryos lacked the delay, but chromosome instability and apoptosis were more pronounced than the corresponding p21 wild-type embryos. We conclude from the result that damage responses come in a stage-specific manner during preimplantation stage development; p53-dependent S checkpoint at the zygote stage, p21-mediated cell cycle arrest at the morula/blastocyst stages and apoptosis after the blastocyst stage in the inner cell mass

    p53-Dependent S-Phase Damage Checkpoint and Pronuclear Cross Talk in Mouse Zygotes with X-Irradiated Sperm

    No full text
    One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [(3)H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G(1)/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53(−/−) zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21(−/−) zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes
    corecore