42 research outputs found

    Ionic composition of aerosol in Big Bend National Park, The

    Get PDF
    July 2002.Includes bibliographical references.The chemical compositions of PM2.5 and size-resolved aerosol particles were measured from July to October, 1999 in Big Bend National Park, Texas, during the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study. Daily PM2.5 samples were collected using a URG cyclone/annular denuder/filter pack sampling system consisting of a PM2.5 cyclone inlet, two coated annular denuders in series (for nitric acid and ammonia), and a filter pack. Aerosol particles collected on a Teflon filter were analyzed for major ions and a backup nylon filter was used to capture nitric acid volatilized from the collected particles. A Micro Orifice Uniform Deposition Impactor (MOUDI) was used to collect 24 hr size-resolved aerosol particle samples in 9 size categories (D50 = 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32 and 0.18 Ī¼m). 41 MOUDI sample days were selected for analysis of the ionic chemical composition as a function of particle size. PM2.5 and size-resolved aerosol concentrations of C1-, SO42-, NO3-, Na+, NH4+, K+, Mg2+, and Ca2+ were obtained through ion chromatographic analysis of the filter and impactor samples. Aerosol acidity was measured on-site in the daily PM2.s filter samples. The composition of the BRAVO PM2.5 aerosol was dominated by sulfate and ammonium. Daily average sulfate and ammonium concentrations were strongly correlated (R2=0.97). The ratio of ammonium to sulfate averaged 1.54 with standard deviation of 0.30. This ratio is consistent with the direct pH measurements of aerosol acidity. The highest concentrations of sulfate were observed from August to October, reaching as high as 8.5 Ī¼g/m3. Back-trajectories suggested long-range transport from regions along the Texas/Mexico border and east Texas was associated with peak sulfate concentrations in the park. The particle composition as a function of size obtained from the MOUDI samples suggests that most of the particulate nitrate is associated with coarse mode particles in the range of 4 - 5 Ī¼m diameter. Aerosol nitrate concentrations were correlated with the sum of aerosol Na+ and Ca2+ concentrations (R2 = 0.70 and 0.60 for MOUDI and URG, respectively), demonstrating the importance of sea salt and soil dust particles in providing non-acidic surfaces for the condensation of nitric acid. The MOUDI samples indicate that nitrate and sulfate are separated into supermicron (mode diameter 4 - 5 Ī¼m) and submicron (mode diameter 0.4 - 0.5 Ī¼m) particles, respectively. The MOUDI samples show that a 1 Ī¼m size cut would have provided a better division between the fine mode and the coarse mode aerosol during the BRAVO study. Comparison of ISORROPIA and SCAPE2 thermodynamic model predictions of solid phase sulfate species shows reasonable agreement between the models, although ISORROPIA sometime predicts higher concentrations of some species. ISORROPIA often predicts the presence of solid phase Na2SO4, while SCAPE2 seldom does. The difference between solid phase sulfate concentrations predicted by the two models largely reflects differences in predicted aerosol water content. Both models reasonably predict the observed phase partitioning of N(-III) but poorly predict the observed phase partitioning of N(V). The underprediction of aerosol nitrate by these bulk aerosol models reflects the fact that the PM2.5 aerosol is externally mixed, containing acidic submicron sulfate particles and supermicron nitrate particles.Funding agency: National Park Service #CA238099001

    Traffic Convexity Aware Cellular Networks: A Vehicular Heavy User Perspective

    Full text link
    Rampant mobile traffic increase in modern cellular networks is mostly caused by large-sized multimedia contents. Recent advancements in smart devices as well as radio access technologies promote the consumption of bulky content, even for people in moving vehicles, referred to as vehicular heavy users. In this article the emergence of vehicular heavy user traffic is observed by field experiments conducted in 2012 and 2015 in Seoul, Korea. The experiments reveal that such traffic is becoming dominant, captured by the 8.62 times increase in vehicular heavy user traffic while the total traffic increased 3.04 times. To resolve this so-called vehicular heavy user problem (VHP), we propose a cell association algorithm that exploits user demand diversity for different velocities. This user traffic pattern is discovered first by our field trials, which is convex-shaped over velocity, i.e. walking user traffic is less than stationary or vehicular user traffic. As the VHP becomes severe, numerical evaluation verifies the proposed user convexity aware association outperforms a well-known load balancing association in practice, cell range expansion (CRE). In addition to the cell association, several complementary techniques are suggested in line with the technical trend toward 5G.Comment: 15 pages, 5 figures, 1 table, to appear in IEEE Wireless Communications Magazin

    The Koreaā€“United States Air Quality (KORUS-AQ) field study

    Get PDF
    The Koreaā€“United States Air Quality (KORUS-AQ) field study was conducted during Mayā€“June 2016. The effort was jointly sponsored by the National Institute of Environmental Research of South Korea and the National Aeronautics and Space Administration of the United States. KORUS-AQ offered an unprecedented, multi-perspective view of air quality conditions in South Korea by employing observations from three aircraft, an extensive ground-based network, and three ships along with an array of air quality forecast models. Information gathered during the study is contributing to an improved understanding of the factors controlling air quality in South Korea. The study also provided a valuable test bed for future air qualityā€“observing strategies involving geostationary satellite instruments being launched by both countries to examine air quality throughout the day over Asia and North America. This article presents details on the KORUS-AQ observational assets, study execution, data products, and air quality conditions observed during the study. High-level findings from companion papers in this special issue are also summarized and discussed in relation to the factors controlling fine particle and ozone pollution, current emissions and source apportionment, and expectations for the role of satellite observations in the future. Resulting policy recommendations and advice regarding plans going forward are summarized. These results provide an important update to early feedback previously provided in a Rapid Science Synthesis Report produced for South Korean policy makers in 2017 and form the basis for the Final Science Synthesis Report delivered in 2020

    Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ

    Get PDF
    Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASAā€“NIER KORUS-AQ (Koreaā€“United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was āˆ¼1ā€“3ā€‰Āµgā€‰smāˆ’3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was āˆ¼140ā€‰Āµgsmāˆ’3ppmvāˆ’1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20ā€“70ā€‰Āµgsmāˆ’3ppmvāˆ’1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13ā€‰Āµgā€‰smāˆ’3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11ā€‰% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9ā€‰% of the modeled SOA over Seoul. Finally, along with these results, we use the metric Ī”OA/Ī”CO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than Ī”OAāˆ•Ī”CO

    Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ

    Get PDF
    Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA-NIER KORUS-AQ (Korea-United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was similar to 1-3 mu g sm(-3). Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was similar to 140 mu g sm(-3) ppmv 1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20-70 mu g sm(-3) ppmv(-1) at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 mu g sm(-3)), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9% of the modeled SOA over Seoul. Finally, along with these results, we use the metric Delta OA/Delta CO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than Delta OA/Delta CO

    Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ

    Get PDF
    Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASAā€“NIER KORUS-AQ (Koreaā€“United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was āˆ¼1ā€“3ā€‰Āµgā€‰sm^(āˆ’3). Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was āˆ¼140ā€‰Āµgsm^(āˆ’3) ppmv^(āˆ’1) at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20ā€“70ā€‰Āµgsm^(āˆ’30) ppmv^(āˆ’1) at 0.5 equivalent days). For the average OA concentration observed over Seoul (13ā€‰Āµgā€‰sm^(āˆ’3)), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11ā€‰% on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9ā€‰% of the modeled SOA over Seoul. Finally, along with these results, we use the metric Ī”OA/Ī”CO_2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than Ī”OAāˆ•Ī”CO
    corecore