53 research outputs found
A Statistical Graphical Model of the California Reservoir System
The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003–2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI
A Statistical Graphical Model of the California Reservoir System
The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003–2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI
THE CRYSTAL AND MOLECULAR STRUCTURE OF N, N'-3, 6-DIOXA-1, 8-OCTANEBIS (SALICYLALDIMINE), C 20 H 24 N 2 O 24
Abstract - The crystal structure of the compound C 20 H 24 N 2 O 24 was determined by direct methods. The crystals are monoclinic, space group P2 1 /n, and unit cell parameters are: a= 10.234
First case of childhood Takayasu arteritis with renal artery aneurysms
Takayasu arteritis is a large vessel systemic granulomatous vasculitis characterized by stenosis or obliteration of large and medium sized arteries. It commonly involves elastic arteries such as the aorta and its main branches. Renal artery involvement is rare and has not been reported in a child. We report a 12-year-old boy with Takayasu arteritis who developed severe hypertension, proteinuria, microscopic hematuria and renal dysfunction. Conventional angiography demonstrated aneurysms of both renal arteries and multiple microaneurysms of the superior mesenteric artery. This case report illustrates that the children with Takayasu arteritis can develop renal involvement resulting in hematuria, proteinuria and even renal failure
THE ROLE OF METAL ION ON PHYSIOCHEMICAL PROPERTIES OF METAL ALUMINATES PREPARED BY IMPREGNATION METHOD
A series of MAl2O4 (M=Ni, Zn, and Cu) aluminates were prepared by using impregnation method; the metal content of the products was ranged between 5wt% to 25wt%. The samples were characterized by x-ray diffraction (XRD), Brunauer Emmett Teller (BET) surface area, NH3 temperature-programmed desorption (NH3-TPD), and inductively coupled argon plasma (ICP).
The specific surface areas of zinc, nickel and copper aluminates were in the ranges of 47-77m2/g, 63-87m2/g and 1.6-3m2/g, respectively. The surface acidity decreased in the order of CuAl2O4<< NiAl2O4< ZnAl2O4<< Al2O3. By increasing the amount of metals in the samples, the number of acidic sites decreased, but their strength did not significantly change. Ni-aluminates have fewer acidic sites than Zn-aluminates, particularly in strong acid site
Look Different: Effect of Radiation Hormesis on the Survival Rate of Immunosuppressed Mice
Background: Hormesis is defined as the bio-positive response of something which is bio-negative in high doses. In the present study, the effect of radiation hormesis was evaluated on the survival rate of immunosuppressed BALB/c mice by Cyclosporine A. Material and Methods: We used 75 consanguine, male, BALB/c mice in this experiment. The first group received Technetium-99m (3700Bq) and the second group was placed on a sample radioactive soil of Ramsar region (800Bq) for 20 days. The third group was exposed to X-rays (3600Bq) and the fourth group was placed on the radioactive soil and then injected Technetium-99m. The last group was the sham irradiated control group. Finally, 30mg Cyclosporine A as the immunosuppressive agent was orally administered to all mice 48 hours after receiving X-rays and Technetium99m. The mean survival rate of mice in each group was estimated during time. Results: A log rank test was run to determine if there were differences in the survival distribution for different groups and related treatments. According to the results, the survival rate of all pre-irradiated groups was more than the sham irradiated control group (p < .05). The highest survival time was related to the mice which were placed on the radioactive soil of Ramsar region for 20 days and then injected Technetium99m. Conclusion: This study confirmed the presence of hormetic models and the enhancement of survival rate in immunosuppressed BALB/c mice as a consequence of low-dose irradiation. It is also revealed the positive synergetic radioadaptive response on survival rate of immunosuppressed animals
Abscopal effect in radioimmunotherapy
Abscopal effect is an interesting phenomenon in radiobiology that causes activation of immune system against cancer cells. Traditionally, this phenomenon was known as a suppressor of non-irradiated tumors or metastasis. However, it can be used as a stimulator of the immune system against primary tumor during radiotherapy. Immunotherapy, a novel tumor therapy modality, also triggers immune system against cancer. To date, some immunotherapy types have been developed. However, immune checkpoint blockade is a more common modality and some drugs have been approved by the FDA. Studies have shown that radiotherapy or immunotherapy administered alone have low efficiency for tumor control. However, their combination has a more potent anti-tumor immunity. For this aim, it is important to induce abscopal effect in primary tumors, and also use appropriate drugs to target the mechanisms involved in the exhaustion of cytotoxic CD8+T lymphocytes (CTLs) and natural killer (NK) cells. Among the different radiotherapy techniques, stereotactic body radiation therapy (SBRT) with some few fractionations is the best choice for inducing abscopal effect. On the other hand, programmed cell death 1 (PD-1) is known as one of the best targets for triggering anti-tumor immunity. This combination is known as the best choice among various strategies for radioimmunotherapy. However, there is the need for other strategies to improve the duration of immune system's activity within tumor microenvironment (TME). In this review, we explain the cellular and molecular mechanisms behind abscopal effect by radiotherapy and evaluate the molecular targets which induce potent anti-tumor immunity. © 2020 Elsevier B.V
The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives
Tumor microenvironment (TME) includes a wide range of cell types including cancer cells, cells which are involved in stromal structure and immune cells (tumor suppressor and tumor promoting cells). These cells have several interactions with each other that are mainly regulated via the release of intercellular mediators. Radiotherapy can modulate these interactions via shifting secretions into inflammatory or anti-inflammatory responses. Radiotherapy also can trigger resistance of cancer (stem) cells via activation of stromal cells. The main mechanisms of tumor resistance to radiotherapy is the exhaustion of anti-tumor immunity via suppression of CD4+ T cells and apoptosis of cytotoxic CD8+ T lymphocytes (CTLs). Cancer-associated fibroblasts (CAFs), mesenchymal-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are the main suppressor of anti-tumor immunity via the release of several chemokines, cytokines and immune suppressors. In this review, we explain the main cellular and molecular interactions and secretions in TME following radiotherapy. Furthermore, the main signaling pathways and intercellular connections that can be targeted to improve therapeutic efficiency of radiotherapy will be discussed. © 2020 Elsevier B.V
- …