30 research outputs found

    The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain

    No full text
    The adhesion of porcelain to zirconia is a key factor in the success of bilayered restorations. In this study, the efficacy of a novel experimental liner (EL) containing zirconia for improved bonding between zirconia and veneering porcelain was tested. Four ELs containing various concentrations (0, 3.0, 6.0, and 9.0 wt %) of zirconia were prepared. Testing determined the most effective EL (EL3 containing 3.0 wt % zirconia) in terms of shear bond strength value (n = 15). Three different bar-shaped zirconia/porcelain bilayer specimens were prepared for a three-point flexural strength (TPFS) test (n = 15): no-liner (NL), commercial liner (CL), and EL3. Specimens were tested for TPFS with the porcelain under tension and the maximum load was measured at the first sign of fracture. The strength data were analyzed using one-way ANOVA and Tukey’s test (α = 0.05) as well as Weibull distribution. When compared to NL, the CL application had no effect, while the EL3 application had a significant positive effect (p < 0.001) on the flexural strength. Weibull analysis also revealed the highest shape and scale parameters for group EL3. Within the limitations of this study, the novel ceramic liner containing 3.0 wt % zirconia (EL3) significantly enhanced the zirconia/porcelain interfacial bonding

    Challenging the Resin-Zirconia Interface by Thermal Cycling or Mechanical Load Cycling or Their Combinations

    No full text
    The purpose of this in vitro study was to evaluate the influence of mechanical load cycling (MLC), which simulated mastication, alone or combined with thermal cycling (TC), on the resin shear bond strength (SBS) to zirconia. Two resin cements (Panavia F2.0 and RelyX U200) were bonded (bonding area: 2.38 mm) to air-abraded zirconia (Everest ZS-Ronde). The specimens were subjected to SBS test before and after TC (5000 cycles), MLC (5000 cycles in 37 °C water), TC/MLC, or MLC/TC aging (n = 15). Before SBS test, the mechanical and physical properties of the two resin cements were studied (n = 5). For both resins, unlike TC (p > 0.05), the three MLC-containing aging conditions significantly decreased the SBS values when compared to the non-aged condition (p < 0.05). In the case of MLC-only aging, RelyX U200, with significantly higher hydrophobicity (p = 0.004), showed a significantly higher SBS value than Panavia F2.0 (p = 0.035). The MLC aging-containing groups showed increased occurrence of mixed failure. The application of MLC combined with TC may more closely simulate intraoral conditions

    Corrosion of Stirred Electrochemical Nano-Crystalline Hydroxyapatite (HA) Coatings on Ti6Al4V

    No full text
    Ti6Al4V substrates were electrochemically deposited with nano-crystalline hydroxyapatite (HA) from aqueous electrolytes. Cathodic HA coatings were obtained when the electrolyte was stirred using ultrasonic vibration. Two current densities of 20 mA/cm2 and 50 mA/cm2 were employed. Polarization and electrochemical impedance spectroscopy (EIS) were the techniques used to estimate the corrosion of coatings in simulated body fluid (SBF). The results indicate good corrosion resistance for the coating obtained at 50 mA/cm2 from ultrasonic stirring of the electrolyte

    The Influence of Process Parameters on the Surface Roughness of a 3D-Printed Co–Cr Dental Alloy Produced via Selective Laser Melting

    No full text
    Selective laser melting (SLM), used to fabricate metallic objects with high geometrical complexity, is currently of increasing interest to the fields of medicine and dentistry. SLM-fabricated products should have highly smooth surfaces to minimize the use of post-processing procedures such as finishing and polishing. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan-line spacing) on the surface roughness of a Co–Cr dental alloy that was three-dimensionally (3D) constructed via SLM. Initially, a single-line formation test was used to determine the optimal laser power (200 W) and scan rate (128.6 mm/s) that resulted in beads with an optimal profile. During subsequent multi-layer formation tests, the 3D Co–Cr body with the smoothest surface was produced using a scan-line spacing of 100 μm. The findings of this study show that laser process parameters have crucial effects on the surface quality of SLM-fabricated Co–Cr dental alloys

    Setting Reaction of Dental Resin-Modified Glass Ionomer Restoratives as a Function of Curing Depth and Postirradiation Time

    No full text
    Specular reflectance Fourier transform infrared (SR-FTIR) spectroscopy was used to study the setting reaction of dental resin-modified glass ionomer (RMGI) restoratives as a function of curing depth and postirradiation time. Two light-cure and one tri-cure RMGI materials were selected and used according to the manufacturers’ instructions. Samples were prepared by filling the mixed materials into custom-made molds and then light-irradiating using a dental curing light. The degree of conversion and the extent of acid-base reaction of the materials at different depths (0, 1, 2, and 4 mm) and postirradiation times (10 min, 1 day, and 7 days) were determined using SR-FTIR spectroscopy in conjunction with the Kramers-Kronig (K-K) transformation. The setting reaction was also investigated using microhardness measurements. The results showed that the depth of cure increased over time by the continuous acid-base reaction rather than photopolymerization or chemical polymerization. Microhardness tests seemed less suitable for studying the setting reaction as a function of postirradiation time, probably due to softening from the humidity. Analysis using specular reflectance in conjunction with the K-K algorithm was an easy and effective method for monitoring the setting reaction of dental RMGI materials

    Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

    No full text
    Abstract Background Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 μg/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models

    Influence of Different Post-Plasma Treatment Storage Conditions on the Shear Bond Strength of Veneering Porcelain to Zirconia

    No full text
    This in vitro study investigated whether different storage conditions of plasma-treated zirconia specimens affect the shear bond strength of veneering porcelain. Zirconia plates were treated with a non-thermal atmospheric argon plasma (200 W, 600 s). Porcelain veneering (2.38 mm in diameter) was performed immediately (P-I) or after 24 h storage in water (P-W) or air (P-A) on the treated surfaces (n = 10). Untreated plates were used as the control. Each group was further divided into two subgroups according to the application of a ceramic liner. All veneered specimens underwent a shear bond strength (SBS) test. In the X-ray photoelectron spectroscopy (XPS) analysis, the oxygen/carbon ratios of the plasma-treated groups increased in comparison with those of the control group. When a liner was not used, the three plasma-treated groups showed significantly higher SBS values than the control group (p < 0.001), although group P-A exhibited a significantly lower value than the other two groups (p < 0.05). The liner application negatively affected bonding in groups P-I and P-W (p < 0.05). When the veneering step was delayed after plasma treatment of zirconia, storage of the specimens in water was effective in maintaining the cleaned surfaces for optimal bonding with the veneering porcelain

    Application of a Novel CVD TiN Coating on a Biomedical Co–Cr Alloy: An Evaluation of Coating Layer and Substrate Characteristics

    No full text
    Titanium nitride (TiN) was deposited on the surface of a cobalt–chromium (Co–Cr) alloy by a hot-wall type chemical vapor deposition (CVD) reactor at 850 °C, and the coating characteristics were compared with those of a physical vapor deposition (PVD) TiN coating deposited on the same alloy at 450 °C. Neither coating showed any reactions at the interface. The face-centered cubic (fcc) structure of the alloy was changed into a hexagonal close-packed (hcp) phase, and recrystallization occurred over at 10 μm of depth from the surface after CVD coating. Characteristic precipitates were also generated incrementally depending on the depth, unlike the precipitates in the matrix of the as-cast alloy. On the other hand, the microstructure and phase of the PVD-coated alloy did not change. Depth-dependent nano-hardness measurements showed a greater increase in hardness in the recrystallization zone of the CVD-coated alloy than in the bulk center of the alloy. The CVD coating showed superior adhesion to the PVD coating in the progressive scratch test. The as-cast, PVD-coated, and CVD-coated alloys all showed negative cytotoxicity. Within the limitations of this study, CVD TiN coating to biomedical Co–Cr alloy may be considered a promising alternative to PVD technique
    corecore