7,259 research outputs found

    Entropy in the Kerr-Newman Black Hole

    Get PDF
    Entropy of the Kerr-Newman black hole is calculated via the brick wall method with maintaining careful attention to the contribution of superradiant scalar modes. It turns out that the nonsuperradinat and superradiant modes simultaneously contribute to the entropy with the same order in terms of the brick wall cutoff ϵ\epsilon. In particular, the contribution of the superradiant modes to the entropy is negative. To avoid divergency in this method when the angular velocity tends to zero, we propose to intr oduce a lower bound of angular velocity and to treat the case of the angular momentum per unit mass a=0a=0 separately. Moreover, from the lower bound of the angular velocity, we obtain the θ\theta-dependence structure of the brick wall cutoff, which natu rally requires an angular cutoff δ\delta. Finally, if the cutoff values, ϵ\epsilon and δ\delta, satisfy a proper relation between them, the resulting entropy satisfies the area law.Comment: 16 pages, Latex, no figures, References are included, Subsection A and B are reduced to subsection A, Abstract is rewritten, Minor corrections are include

    Non-Stationarity of Streamflow in South Korea: Focus on the Effect on Flood Frequency

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    The Vertical Profile of Transverse Velocity of Secondary Flow in Meandering Channels

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Improvement in carrier mobility of metal oxide thin-film transistor by a microstructure modification

    Get PDF
    Metal oxide thin-film transistors (TFTs) have been rapidly penetrating as an emerging backplane technology for the next generation high pixel density, large-size liquid crystal displays and organic light-emitting diodes panels because of their intriguing properties such as their high field-effect mobility, low subthreshold gate swing, good uniformity, low temperature processing capability, and transparency to visible light.[1-3] However, the typical field-effect mobility of IGZO TFTs in the practical production line is ~10 cm2/Vs, which is still not enough to drive the high-end flat panel displays with the ultra-high-definition, large size ( 60 inch) and high frame rate ( 240 Hz). One of ways to improve the mobility of electron carriers in metal oxide semiconductor would involve the lattice ordering, which leads to the substantial reduction in the carrier scattering with the semiconductor. Approach that seeks to utilize the crystallization of metal oxide semiconductor has yet to be attempted despite the potential scientific and engineering implication. In this presentation, we explored the metal-induced crystallization of amorphous zinc thin oxide (a-ZTO) and indium gallium zinc oxide (a-IGZO) semiconductor at a low temperature. The fabricated crystalline ZTO TFTs exhibited a high field-effect mobility of 33.5 cm2/Vs, subthreshold gate swing of 0.40 V/decade, and ION/OFF ratio of \u3e 5 107. The method in this study is expected to be applied to any type of metal oxide semiconductor. Acknowledgment This study was supported by the National Research Foundation of Korea (NRF) grant funded the Korean government (NRF-2015R1A2A2A01003848) and the industrial strategic technology development program funded by MKE/KEIT (10051403). References 1. K. Nomura et al., Nature 432, 488 (2004). 2. T. Kamyia et al., Sci. Technol. Adv. Mater. 11, 044305 (2010). 3. J. Y. Kwon and J. K. Jeong, Semicond. Sci. Technol. 30, 024002 (2015

    Photothermal Polymer Nanocomposites of Tungsten Bronze Nanorods with Enhanced Tensile Elongation at Low Filler Contents

    Get PDF
    We present polymer nanocomposites of tungsten bronze nanorods (TBNRs) and ethylene propylene diene monomers (EPDM). The combination of these components allows the simultaneous enhancement in the mechanical and photothermal properties of the composites at low filler contents. The as-synthesized TBNRs had lengths and diameters of 14.0 +/- 2.4 nm and 2.5 +/- 0.5 nm, respectively, and were capped with oleylamine, which has a chemical structure similar to EPDM, making the TBNRs compatible with the bulk EPDM matrix. The TBNRs absorb a wide range of near-infrared light because of the sub-band transitions induced by alkali metal doping. Thus, the nanocomposites of TBNRs in EPDM showed enhanced photothermal properties owing to the light absorption and subsequent heat emission by the TBNRs. Noticeably, the nanocomposite with only 3 wt% TBNRs presented significantly enhanced tensile strain at break, in comparison with those of pristine EPDM, nanocomposites with 1 and 2 wt % TBNRs, and those with tungsten bronze nanoparticles, because of the alignment of the nanorods during tensile elongation. The photothermal and mechanical properties of these nanocomposites make them promising materials for various applications such as in fibers, foams, clothes with cold weather resistance, patches or mask-like films for efficient transdermal delivery upon heat generation, and photoresponsive surfaces for droplet transport by the thermocapillary effect in microfluidic devices and microengines

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories
    corecore