29 research outputs found

    Optimal Bidding Strategy for Renewable Microgrid with Active Network Management

    No full text
    Active Network Management (ANM) enables a microgrid to optimally dispatch the active/reactive power of its Renewable Distributed Generation (RDG) and Battery Energy Storage System (BESS) units in real time. Thus, a microgrid with high penetration of RDGs can handle their uncertainties and variabilities to achieve the stable operation using ANM. However, the actual power flow in the line connecting the main grid and microgrid may deviate significantly from the day-ahead bids if the bids are determined without consideration of the real-time adjustment through ANM, which will lead to a substantial imbalance cost. Therefore, this study proposes a formulation for obtaining an optimal bidding which reflects the change of power flow in the connecting line by real-time adjustment using ANM. The proposed formulation maximizes the expected profit of the microgrid considering various network and physical constraints. The effectiveness of the proposed bidding strategy is verified through the simulations with a 33-bus test microgrid. The simulation results show that the proposed bidding strategy improves the expected operating profit by reducing the imbalance cost to a greater degree compared to the basic bidding strategy without consideration of ANM

    Optimal Coordinated Management of a Plug-In Electric Vehicle Charging Station under a Flexible Penalty Contract for Voltage Security

    No full text
    The increasing penetration of plug-in electric vehicles (PEVs) may cause a low-voltage problem in the distribution network. In particular, the introduction of charging stations where multiple PEVs are simultaneously charged at the same bus can aggravate the low-voltage problem. Unlike a distribution network operator (DNO) who has the overall responsibility for stable and reliable network operation, a charging station operator (CSO) may schedule PEV charging without consideration for the resulting severe voltage drop. Therefore, there is a need for the DNO to impose a coordination measure to induce the CSO to adjust its charging schedule to help mitigate the voltage problem. Although the current time-of-use (TOU) tariff is an indirect coordination measure that can motivate the CSO to shift its charging demand to off-peak time by imposing a high rate at the peak time, it is limited by its rigidity in that the network voltage condition cannot be flexibly reflected in the tariff. Therefore, a flexible penalty contract (FPC) for voltage security to be used as a direct coordination measure is proposed. In addition, the optimal coordinated management is formulated. Using the Pacific Gas and Electric Company (PG&E) 69-bus test distribution network, the effectiveness of the coordination was verified by comparison with the current TOU tariff

    The Inhibitory Effect of Alisol A 24-Acetate from Alisma canaliculatum on Osteoclastogenesis

    No full text
    Osteoporosis is a disease that decreases bone mass. The number of patients with osteoporosis has been increasing, including an increase in patients with bone fractures, which lead to higher medical costs. Osteoporosis treatment is all-important in preventing bone loss. One strategy for osteoporosis treatment is to inhibit osteoclastogenesis. Osteoclasts are bone-resorbing multinucleated cells, and overactive osteoclasts and/or their increased number are observed in bone disorders including osteoporosis and rheumatoid arthritis. Bioactivity-guided fractionations led to the isolation of alisol A 24-acetate from the dried tuber of Alisma canaliculatum. Alisol A 24-acetate inhibited RANKL-mediated osteoclast differentiation by downregulating NFATc1, which plays an essential role in osteoclast differentiation. Furthermore, it inhibited the expression of DC-STAMP and cathepsin K, which are related to cell-cell fusion of osteoclasts and bone resorption, respectively. Therefore, alisol A 24-acetate could be developed as a new structural scaffold for inhibitors of osteoclast differentiation in order to develop new drugs against osteoporosis

    The Inhibitory Effect of Alisol A 24-Acetate from Alisma canaliculatum on Osteoclastogenesis

    No full text
    Osteoporosis is a disease that decreases bone mass. The number of patients with osteoporosis has been increasing, including an increase in patients with bone fractures, which lead to higher medical costs. Osteoporosis treatment is all-important in preventing bone loss. One strategy for osteoporosis treatment is to inhibit osteoclastogenesis. Osteoclasts are bone-resorbing multinucleated cells, and overactive osteoclasts and/or their increased number are observed in bone disorders including osteoporosis and rheumatoid arthritis. Bioactivity-guided fractionations led to the isolation of alisol A 24-acetate from the dried tuber of Alisma canaliculatum. Alisol A 24-acetate inhibited RANKL-mediated osteoclast differentiation by downregulating NFATc1, which plays an essential role in osteoclast differentiation. Furthermore, it inhibited the expression of DC-STAMP and cathepsin K, which are related to cell-cell fusion of osteoclasts and bone resorption, respectively. Therefore, alisol A 24-acetate could be developed as a new structural scaffold for inhibitors of osteoclast differentiation in order to develop new drugs against osteoporosis
    corecore