795 research outputs found

    Modeling the plastic deformation of crystals with thin precipitates

    Get PDF
    AbstractPrecipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crystals is modeled in this article. For the convenience of the computational derivation and implementation, the material formulation is given in the unrotated intermediate configuration mapped by the plastic part of the deformation gradient. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic hardening and kinematic hardening are suggested. The corresponding elastic–plastic rate-independent algorithmic treatment is derived and numerical simulations of various loading cases are presented to discuss and assess the performance of the suggested model and its rate-independent algorithmic treatment

    The limited immunomodulatory effects of escharectomy on the kinetics of endotoxin, cytokines, and adhesion molecules in major burns.

    Get PDF
    Escharectomy has been shown to improve the survival rates and the outcomes in burns. This observational study was conducted to assess the role of escharectomy on the inflammatory mediators in major burns. Seventeen ASA physical status II or status III adult surviving major burn patients were recruited. When the escharectomy was scheduled, a series of blood samples was obtained at -3 and -1 days preoperation, and +1 and +3 postoperation. The changing levels of endotoxin, cytokines, and adhesion molecules were measured with a quantitative sandwich immunoassay. Extensive escharectomy did not appear to have any significant impact on the levels of tumor necrosis factor alpha, interleukin-10, soluble intracellular adhesion molecule-1 and soluble vascular adhesion molecule-1. Meanwhile, endotoxin and E-selectin were significantly decreased after escharectomy. Escharectomy appeared to have a limited immunomodulatory effect on the inflammatory mediators in systemic inflammatory responses induced by major burns. This is probably related to the timing and extent of surgery, and the complex nature of burn-related inflammation

    The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

    Get PDF
    STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad Sa ¨ckingen, Germany) were prepared in 40 mm (length) x 4 mm (width) x 3 mm (height) samples. Specimens were artificially aged in distilled water by heattreatment at a temperature of 75, 100, 125, 150, 175, 200, and 225℃ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences (α= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below 125℃ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above 150℃, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above 100℃. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above 175℃. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MOST) (No. R01-2007-000-10977-0)

    Adsorptive removal of CO2 from CO2-CH4 mixture using cation-exchanged zeolites

    Get PDF
    Raw natural gas and landfill gas contains methane as its major component, but it also contains considerable amounts of contaminants such as CO2 and H2S (i.e. acid gases) that can cause corrosion and fouling of the pipeline and equipment during transportation and liquefaction. Amine-based CO2 gas removal processes have been employed in the gas industry, but these processes have disadvantages including high regeneration energy requirements and inefficiencies; these issues have not been adequately solved to date. Currently, adsorptive acid gas removal technologies have received significant interest because of the simplicity of adsorbent regeneration by thermal or pressure variation1). Numerous micro- and mesoporous adsorbents including zeolites [2-3], titanosilicates[4], activated carbons[5-6], metal-organic-framework (MOF) [7], and silica-alumina materials[8-9] were studied for this type of application. However, the CO2/CH4 selectivity of the aforementioned adsorbents was not high enough for commercial applications.In this study, different cation-exchanged zeolites were synthesized, physicochemically characterized, and evaluated for adsorptive removal of CO2 from CO2-CH4 mixtures. The adsorption isotherms of CO2 and CH4 in the pressure and temperature ranges 0 − 3MPa and 10 – 40 oC, respectively, for different cation-exchanged zeolites were measured and compared. The ideal-adsorbed solution theory (IAST) was employed for the estimation of CO2/CH4 selectivity for the different cation-exchanged zeolites. References 1) D. Aaron, C. Tsouris, Separ. Sci. Technol. 2005, 40, 321–348 2) J. Collins, US Patent No. 3,751,878. 1973. 3) M. W. Seery, US Patent No. 5,938,819. 1999 4) W. B. Dolan, M.J. Mitariten, US Patent No. 6,610,124 B1. 2003 5) A. Kapoor, R.T. Yang, Chem. Eng. Sci. 1989, 44, 1723–1733 6) A. Jayaraman, Chiao, A. S.; Padin, J.; Yang, R. T.; Munson, C. L., Separ. Sci. Technol. 2002 37, 2505–2528 7) L. Hamon, E. Jolimaitre, G. Pringruber , Ind. Eng. Chem. Res. 2010, 49, 7497-7503 8) W.B. Dolan, M.J. Mitariten, US patent No. 2003/0047071, 2003 9) G. Bellussi, P. Broccia, A. Carati, R. Millini, P. Pollesel, C. Rizzo, M. Tagliabue, Micropor. Mesopor. Mat., 2011, 146, 134–14

    A highly active and redox stable novel ceramic anode with in-situ exsolution of nanocatalysts

    Get PDF
    Layered perovskite novel ceramic anode (referred to as SGNM) phases were evaluated for use in solid oxide fuel cells (SOFCs). Hydrogen temperature programmed reduction (H2-TPR) analysis of the SGNM materials revealed that significant exsolution of Ni nanoparticles occurred. Consistently, the SGNM on the LSGM electrolyte showed low electrode polarization resistance in H2 at 800 °C. Moreover, after 10 redox cycles at 750 °C, the electrode area specific resistance of the SGNM anode in H2 slightly increased during cycle, indicating excellent redox stability in both reducing and oxidizing atmospheres. An LSGM-electrolyte supported SOFC employing an SGNM-based anode yielded a high power density of ~1 W cm-2 at 800 °C, which is the best performance among the any SOFCs with Ruddlesden-Popper based ceramic anodes to date. After performance measurement, we observed that metallic Ni nanoparticles (~ 25 nm) were grown in situ and homogeneously distributed on the SGNM anode surface. These exsolved nanocatalysts are believed to significantly enhance the hydrogen oxidation activity of the SGNM material. These results demonstrate that the novel SGNM material is promising as a high catalytically active and redox-stable anode for SOFCs.. Please click Additional Files below to see the full abstract

    A STUDY ON THE GRIP FORCE DURING PUTTING STROKE

    Get PDF
    There are lots of variables to affect the control of ball movement during golf putting. Among several variables, it is believed that grip force during putting stroke is one of the important variables. However, there is not much quantitative evidence from published literature (Delay 1997, Gwyn 1993). Therefore, the purpose of this study was to quantify the grip force by comparing putts performed by elite and novice golfers and to identify the relationship between kinematic parameters and the grip force at 16 different parts of subjects’ right and left hand at each putting phase

    Harvesting electrical energy using plasmon-enhanced light pressure in a platinum cut cone

    Get PDF
    We have designed a method of harvesting electrical energy using plasmon-enhanced light pressure. A device was fabricated as a cut cone structure that optimizes light collection so that the weak incident light pressure can be sufficiently enhanced inside the cut cone to generate electrical energy. An increase in the device's current output is a strong indication that the pressure of incident light has been enhanced by the surface plasmons on a platinum layer inside the cut cone. The electrical energy harvested in a few minutes by irradiating pulsed laser light on a single micro device was possible to illuminate a blue LED
    corecore