122 research outputs found

    Reappraisal of Plasmapheresis as a Supportive Measure in a Patient with Hepatic Failure after Major Hepatectomy

    Get PDF
    Major resection of cirrhotic livers can result in hepatic failure, but no supportive treatment has been found to be generally effective. We successfully treated a 63-year-old woman with post-hepatectomy liver failure with plasmapheresis. Following right hepatectomy, the initial postoperative recovery of liver function was favorable, except for ascites. One month later, however, the amount of drained ascites increased up to 2 l/day. In addition, serum cholesterol concentration gradually decreased to around 30 mg/dl, and serum total bilirubin rose to 11.1 mg/dl. Plasmapheresis was performed, and after just 2 sessions, serum cholesterol level was rapidly corrected and prothrombin time was restored. After 3 sessions of plasmapheresis, the usual rebound rise of serum bilirubin disappeared, and the amount of ascites drained also decreased slowly. The patient underwent a total of 5 sessions of plasmapheresis over 2 weeks, after which liver function improved slowly, and she was finally discharged 72 days after liver resection. Mild ascites requiring diuretic therapy persisted over 3 months. She is doing well to date 10 months after liver resection without tumor recurrence or hepatic decompensation. This limited experience suggests that plasmapheresis can be a useful liver support for post-hepatectomy liver failure

    Identification of a novel angiogenic peptide from periostin

    Get PDF
    Angiogenic peptides have therapeutic potential for the treatment of chronic ischemic diseases. Periostin, an extracellular matrix protein expressed in injured tissues, promotes angiogenesis and tissue repair. We previously reported that in vivo administration of both recombinant full-length protein and the first FAS I domain of periostin alleviated peripheral artery occlusive disease by stimulating the migration of humane endothelial colony forming cells (ECFCs) and subsequent angiogenesis. In the present study, we ascertained the peptide sequence responsible for the periostin-induced angiogenesis. By serial deletion mapping of the first FAS I domain, we identified a peptide sequence (amino acids 142-151) of periostin for stimulation of chemotactic migration, adhesion, proliferation and endothelial tube formation of human ECFCs in vitro. Chemotactic migration of ECFCs induced by the periostin peptide was blocked by pre-incubation with an anti-??5 integrin neutralizing antibody. Treatment of ECFCs with the periostin peptide led to phosphorylation of both AKT and ERK, and pretreatment of ECFCs with the MEK-ERK pathway inhibitor U0126 or the PI3K-AKT pathway inhibitors, LY294002 or Wortmannin, blocked the periostin peptide-stimulated migration of ECFCs. These results suggest that the synthetic periostin peptide can be applied for stimulating angiogenic and therapeutic potentials of ECFCs

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore