2,911 research outputs found
Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian approaches
We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to
study the full symmetry structure of the model at the first class Hamiltonian
level. On the other hand, we also analyze the symmetry structure of the action
having the WZ term, which corresponds to this Hamiltonian, in the framework of
the Lagrangian approach. Furthermore, following the BFV formalism we derive the
BRST invariant gauge fixed Lagrangian from the above extended action.Comment: 14 pages, final revised version, to appear in Mod. Phys. Lett.
Cosmic String Spacetime in Dilaton Gravity and Flat Rotation Curves
In dilaton gravity theories, we consider a string-like topological defect
formed during U(1) gauge symmetry-breaking phase transition in the early
Universe, and far from the cosmic string we have vacuum solutions of the
generalized Einstein equation. We discuss how they can be related to the
flatness of galactic rotation curves.Comment: 9 pages, RevTeX4 fil
model with Hopf term and fractional spin statistics
We reconsider the model with the Hopf term by using the
Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac
quantization method. We also perform a semi-classical quantization of the
topological charge Q sector by exploiting the collective coordinates to
explicitly show the fractional spin statistics.Comment: 15 page
Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators
We investigated the effect of time delays on phase configurations in a set of
two-dimensional coupled phase oscillators. Each oscillator is allowed to
interact with its neighbors located within a finite radius, which serves as a
control parameter in this study. It is found that distance-dependent
time-delays induce various patterns including traveling rolls, square-like and
rhombus-like patterns, spirals, and targets. We analyzed the stability
boundaries of the emerging patterns and briefly pointed out the possible
empirical implications of such time-delayed patterns.Comment: 5 Figure
Symplectic embedding and Hamilton-Jacobi analysis of Proca model
Following the symplectic approach we show how to embed the Abelian Proca
model into a first-class system by extending the configuration space to include
an additional pair of scalar fields, and compare it with the improved Dirac
scheme. We obtain in this way the desired Wess-Zumino and gauge fixing terms of
BRST invariant Lagrangian. Furthermore, the integrability properties of the
second-class system described by the Abelian Proca model are investigated using
the Hamilton-Jacobi formalism, where we construct the closed Lie algebra by
introducing operators associated with the generalized Poisson brackets.Comment: 24 page
Diffeomorphic random sampling using optimal information transport
In this article we explore an algorithm for diffeomorphic random sampling of
nonuniform probability distributions on Riemannian manifolds. The algorithm is
based on optimal information transport (OIT)---an analogue of optimal mass
transport (OMT). Our framework uses the deep geometric connections between the
Fisher-Rao metric on the space of probability densities and the right-invariant
information metric on the group of diffeomorphisms. The resulting sampling
algorithm is a promising alternative to OMT, in particular as our formulation
is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to
Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when
a large number of samples from a low dimensional nonuniform distribution is
needed.Comment: 8 pages, 3 figure
Exact soluble two-dimensional charged wormhole
We present an exactly soluble charged wormhole model in two dimensions by
adding infalling chiral fermions on the static wormhole. The infalling energy
due to the infalling charged matter requires the classical back reaction of the
geometry, which is solved by taking into account of the nontrivial nonchiral
exotic energy. Finally, we obtain the exact expression for the size of the
throat depending on the total amount of the infalling net energy and discuss
the interesting transition from the AdS spacetime to the wormhole geometry.Comment: 8 pages, no figure
A Micro Molecular Bipolar Outflow From HL Tau
We present detailed geometry and kinematics of the inner outflow toward HL
Tau observed using Near Infrared Integral Field Spectograph (NIFS) at the
Gemini-North 8-m Observatory. We analyzed H2 2.122 um emission and [Fe II]
1.644 um line emission as well as the adjacent continuum observed at a <0".2
resolution. The H2 emission shows (1) a bubble-like geometry to the northeast
of the star, as briefly reported in the previous paper, and (2) faint emission
in the southwest counterflow, which has been revealed through careful analysis.
The emission on both sides of the star show an arc 1".0 away from the star,
exhibiting a bipolar symmetry. Different brightness and morphologies in the
northeast and southwest flows are attributed to absorption and obscuration of
the latter by a flattened envelope and a circumstellar disk. The H2 emission
shows a remarkably different morphology from the collimated jet seen in [Fe II]
emission. The positions of some features coincide with scattering continuum,
indicating that these are associated with cavities in the dusty envelope. Such
properties are similar to millimeter CO outflows, although the spatial scale of
the H2 outflow in our image (~150 AU) is strikingly smaller than the mm
outflows, which often extend over 1000-10000 AU scales. The position-velocity
diagram of the H2 and [Fe II] emission do not show any evidence for kinematic
interaction between these flows. All results described above support the
scenario that the jet is surrounded by an unseen wide-angled wind, which
interacts with the ambient gas and produce the bipolar cavity and shocked H2
emission.Comment: 13 pages, 4 figures, accepted for publication in ApJ
Schr\"{o}dinger Fields on the Plane with non-Abelian Chern-Simons Interactions
Physical content of the nonrelativistic quantum field theory with non-Abelian
Chern-Simons interactions is clarified with the help of the equivalent first-
quantized description which we derive in any physical gauge.Comment: 12 pages, LaTex, SNUTP 94-1
- …