1,364 research outputs found
Applicaton of USB Serial Communication to Radon Measuring System
The USB serial communication such as USB-Serial-for PC and USB-Serial-for-Android is studied in order to monitor the measure radon data using a PC screen or a smart phone screen. Through some experimental studies, we believe that the USB serial communication module is useful for checking the data transmitted to a PC from a microcontroller
The Influence of Preoperative Bladder Outlet Obstruction on Continence and Satisfaction in Patients with Stress Urinary Incontinence after Midurethral Sling
Purpose We studied the influence of preoperative bladder outlet obstruction (BOO) on postoperative continence rates and patient satisfaction after the midurethral sling procedure. Methods A total of 159 women who underwent the midurethral sling procedure were evaluated. Using the Blaivas-Groutz nomogram, we assigned the patients were assigned to Group I (n=37, no obstruction), Group II (n=89, mild obstruction), or Group III (n=33, moderate to severe obstruction). Continence rates, patient satisfaction, urinary sensation scale and uroflowmetry were evaluated postoperatively. Results There were no significant differences in continence rates, satisfaction, or postoperative maximal flow rate between the 3 groups. Postoperative urgency was improved after surgery in Groups I and II (P<0.05) but not in Group III. Conclusions BOO does not seem to be a risk factor for failure after the midurethral sling procedure. However, BOO may be considered as a potential factor for persistent storage symptoms after the midurethral sling
Volumetric Reductions of Subcortical Structures and Their Localizations in Alcohol-Dependent Patients
Changes in brain morphometry have been extensively reported in various studies examining the effects of chronic alcohol use in alcohol-dependent patients. Such studies were able to confirm the association between chronic alcohol use and volumetric reductions in subcortical structures using FSL (FMRIB software library). However, each study that utilized FSL had different sets of subcortical structures that showed significant volumetric reduction. First, we aimed to investigate the reproducibility of using FSL to assess volumetric differences of subcortical structures between alcohol-dependent patients and control subjects. Second, we aimed to use Vertex analysis, a less utilized program, to visually inspect 3D meshes of subcortical structures and observe significant shape abnormalities that occurred in each subcortical structure. Vertex analysis results from the hippocampus and thalamus were overlaid on top of their respective subregional atlases to further pinpoint the subregional locations where shape abnormalities occurred. We analyzed the volumes of 14 subcortical structures (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) in 21 alcohol-dependent subjects and 21 healthy controls using images acquired with 3T MRI. The images were run through various programs found in FSL, such as SIENAX, FIRST, and Vertex analysis. We found that in alcohol-dependent patients, the bilateral thalamus (left: p < 0.01, right: p = 0.01), bilateral putamen (left: p = 0.02, right: p < 0.01), right globus pallidus (p < 0.01), bilateral hippocampus (left: p = 0.05, right: p = 0.03) and bilateral nucleus accumbens (left: p = 0.05, right: p = 0.03) were significantly reduced compared to the corresponding subcortical structures of healthy controls. With vertex analysis, we observed surface reductions of the following hippocampal subfields: Presubiculum, hippocampal tail, hippocampal molecular layer, hippocampal fissure, fimbria, and CA3. We reproduced the assessment made in previous studies that reductions in subcortical volume were negatively associated with alcohol dependence by using the FMRIB Software Library. In addition, we identified the subfields of the thalamus and hippocampus that showed volumetric reduction
Customized Energy Down-Shift using Iridium Complexes for Enhanced Performance of Polymer Solar Cells
School of Molecular Sciences(Chemistry)For the higher performance of polymer solar cells (PSCs), many researchers tried to develop new polymers that can absorb broader range of spectrum. However, there are some limits to absorb broader range with single donor. Therefore, multi donor systems and energy transfer systems have been researched. With two different donors it is easier to enhance absorption range. As a result, multi donor and energy transfer was successful to increase performance. However, the existing systems are applying polymer-polymer systems. When two different polymers are mixed, the compatibility between two polymers is critical to morphology of blend film. Also, in polymer-polymer energy transfer, the boundary between charge transfer and energy transfer is unclear. Therefore, for the first time, we developed customized iridium (Ir(III)) complexes, with Ir(III) complex incorporated into the active materials poly(thieno[3,4-b]-thiophene/benzodithiophene) (PTB7, amorphous) or poly(3-hexylthiophene) (P3HT, high crystalline) as energy donor additives. The Ir(III) complex with the 2-phenyl quinolone ligand energy donor increased the power conversion efficiency of the corresponding devices by approximately 20%. The enhancements are attributed to the improved molecular compatibility and energy level between the Ir(III) complex and the active materials, long F??rster resonance energy transfer radius, and high energy down-shift efficiency. Overall, we reveal Ir(III) complex additives for amorphous and highly crystalline polymer active materialsthese additives would enable efficient energy transfer in polymer solar cells, while retaining the desirable active layer morphology, thereby resulting in improved light absorption and conversion.ope
- …