2,989 research outputs found

    Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli

    Get PDF
    The field of metabolic engineering has the potential to produce a wide variety of chemicals in both an inexpensive and ecologically-friendly manner. Heterologous expression of novel combinations of enzymes promises to provide new or improved synthetic routes towards a substantially increased diversity of small molecules. Recently, we constructed a synthetic pathway to produce d-glucaric acid, a molecule that has been deemed a “top-value added chemical” from biomass, starting from glucose. Limiting flux through the pathway is the second recombinant step, catalyzed by myo-inositol oxygenase (MIOX), whose activity is strongly influenced by the concentration of the myo-inositol substrate. To synthetically increase the effective concentration of myo-inositol, polypeptide scaffolds were built from protein–protein interaction domains to co-localize all three pathway enzymes in a designable complex as previously described (Dueber et al., 2009). Glucaric acid titer was found to be strongly affected by the number of scaffold interaction domains targeting upstream Ino1 enzymes, whereas the effect of increased numbers of MIOX-targeted domains was much less significant. We determined that the scaffolds directly increased the specific MIOX activity and that glucaric acid titers were strongly correlated with MIOX activity. Overall, we observed an approximately 5-fold improvement in product titers over the non-scaffolded control, and a 50% improvement over the previously reported highest titers. These results further validate the utility of these synthetic scaffolds as a tool for metabolic engineering.United States. Office of Naval Research (Young Investigator Program, Grant No. N000140510656)Synthetic Biology Engineering Research CenterNational Science Foundation (U.S.) (Grant No. EEC-0540879)National Science Foundation (U.S.) (Grant No. CBET-0756801

    Significance of Keratinized Mucosa in Maintenance of Dental Implants With Different Surfaces

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142329/1/jper1410.pd

    Theory of One-Channel vs. Multi-Channel Kondo Effects for Ce3+^{3+} Impurities

    Full text link
    We introduce a model for Ce3+^{3+} impurities in cubic metals which exhibits competition between the Fermi-liquid fixed point of the single channel Kondo model and the non-Fermi-liquid fixed point of the two- and three-channel Kondo models. Using the non-crossing approximation and scaling theory, we find: (i) A possible three-channel Kondo effect between the one- and two-channel regimes in parameter space. (ii) The sign of the thermopower is a fixed point diagnostic. (iii) Our results will likely survive the introduction of additional f2f^2 and conduction states. We apply this model to interpret the non-Fermi liquid alloy La1x_{1-x}Cex_xCu2.2_{2.2}Si2_2.Comment: 13 pages, Revtex, To appear in Phys. Rev. Let

    Behavior of NiTiNb SMA wires under recovery stress or prestressing

    Get PDF
    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain

    Thermopower of Aharonov-Bohm Interferometer with a Quantum Dot

    Full text link
    We report on the thermopower of an Aharonov-Bohm interferometer (AB) with a quantum dot in the Kondo limit. The thermopower is anomalously enhanced due to the Kondo effect as in heavy fermion systems. In contrast to the bulk systems, the sign of the thermopower can be changed by adjusting the energy level scheme or the particle-hole asymmetry of a dot with the gate voltage. Further the magnitude and even the sign of the thermopower in the AB ring can be changed at will with varying either magnetic fields or the gate voltages.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Suppression of current in transport through parallel double quantum dots

    Full text link
    We report our study of the I-V curves in the transport through the quantum dot when an additional quantum dot lying in the Kondo regime is side-connected to it. Due to the Kondo scattering off the effective spin on a side-connected quantum dot the conductance is suppressed at low temperatures and at low source-drain bias voltages. This zero-bias anomaly is understood as enhanced Kondo scattering with decreasing temperature.Comment: 14 pages, 8 figure

    Exact soluble two-dimensional charged wormhole

    Full text link
    We present an exactly soluble charged wormhole model in two dimensions by adding infalling chiral fermions on the static wormhole. The infalling energy due to the infalling charged matter requires the classical back reaction of the geometry, which is solved by taking into account of the nontrivial nonchiral exotic energy. Finally, we obtain the exact expression for the size of the throat depending on the total amount of the infalling net energy and discuss the interesting transition from the AdS spacetime to the wormhole geometry.Comment: 8 pages, no figure
    corecore