37 research outputs found

    Unraveling Origins of EPR Spectrum in Graphene Oxide Quantum Dots

    No full text
    Carbon nanostructures are utilized in a plethora of applications ranging from biomedicine to electronics. Particularly interesting are carbon nanostructured quantum dots that can be simultaneously used for bimodal therapies with both targeting and imaging capabilities. Here, magnetic and optical properties of graphene oxide quantum dots (GOQDs) prepared by the top-down technique from graphene oxide and obtained using the Hummers’ method were studied. Graphene oxide was ultra-sonicated, boiled in HNO3, ultra-centrifuged, and finally filtrated, reaching a mean flake size of ~30 nm with quantum dot properties. Flake size distributions were obtained from scanning electron microscopy (SEM) images after consecutive preparation steps. Energy-dispersive X-ray (EDX) confirmed that GOQDs were still oxidized after the fabrication procedure. Magnetic and photoluminescence measurements performed on the obtained GOQDs revealed their paramagnetic behavior and broad range optical photoluminescence around 500 nm, with magnetic moments of 2.41 µB. Finally, electron paramagnetic resonance (EPR) was used to separate the unforeseen contributions and typically not taken into account metal contaminations, and radicals from carbon defects. This study contributes to a better understanding of magnetic properties of carbon nanostructures, which could in the future be used for the design of multimodal imaging agents

    EMR Data on Mn(III; S=2) Ions in MnTPPCl Complex Modelled by Microscopic Spin Hamiltonian Approach

    No full text
    The electron magnetic resonance data on high-spin (S =2) manganese(III) 3d⁴ ion in tetraphenylporphyrinato chloride complex (MnTPPCl) obtained by high-frequency techniques are reanalysed. Preliminary results of semiempirical modeling of the spin Hamiltonian parameters for Mn(III) in MnTPPCl are presented. The microscopic spin Hamiltonian approach is utilized to predict the zero-field splitting and the Zeeman electronic parameters. It is found that for Mn(III) ions in MnTPPCl matching the experimental spin Hamiltonian parameters and the theoretical ones based on the ligand-field energy levels (Δ_{i}) within the ⁵D multiplet only may not be suitable for this system. Contributions due to the levels arising from the higher-lying ³H multiplet need to be taken into account in order to determine the reasonable values of microscopic parameters describing Mn(III) ions in MnTPPCl

    Electron Spin Relaxation in Carbon Materials

    No full text
    This article focuses on EPR relaxation measurements in various carbon samples, e.g., natural carbons—anthracite, coal, higher anthraxolites, graphite; synthetically obtained carbons—glassy carbons, fullerenes, graphene, graphene oxide, reduced graphene oxide, graphite monocrystals, HOPG, nanoribbons, diamonds. The short introduction presents the basics of resonant electron spin relaxation techniques, briefly describing the obtained parameters. This review presents gathered results showing the processes leading to electron spin relaxation and typical ranges of electron spin relaxation rates for many different carbon types

    Biomedical Applications of Graphene-Based Structures

    No full text
    Graphene and graphene oxide (GO) structures and their reduced forms, e.g., GO paper and partially or fully reduced three-dimensional (3D) aerogels, are at the forefront of materials design for extensive biomedical applications that allow for the proliferation and differentiation/maturation of cells, drug delivery, and anticancer therapies. Various viability tests that have been conducted in vitro on human cells and in vivo on mice reveal very promising results, which make graphene-based materials suitable for real-life applications. In this review, we will give an overview of the latest studies that utilize graphene-based structures and their composites in biological applications and show how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and synthetically designed graphene-based nanomaterials

    The Influence of Oxygen Concentration during MAX Phases (Ti<sub>3</sub>AlC<sub>2</sub>) Preparation on the α-Al<sub>2</sub>O<sub>3</sub> Microparticles Content and Specific Surface Area of Multilayered MXenes (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>)

    No full text
    The high specific surface area of multilayered two-dimensional carbides called MXenes, is a critical feature for their use in energy storage systems, especially supercapacitors. Therefore, the possibility of controlling this parameter is highly desired. This work presents the results of the influence of oxygen concentration during Ti3AlC2 ternary carbide&#8212;MAX phase preparation on &#945;-Al2O3 particles content, and thus the porosity and specific surface area of the Ti3C2Tx MXenes. In this research, three different Ti3AlC2 samples were prepared, based on TiC-Ti2AlC powder mixtures, which were conditioned and cold pressed in argon, air and oxygen filled glove-boxes. As-prepared pellets were sintered, ground, sieved and etched using hydrofluoric acid. The MAX phase and MXene samples were analyzed using scanning electron microscopy and X-ray diffraction. The influence of the oxygen concentration on the MXene structures was confirmed by Brunauer-Emmett-Teller surface area determination. It was found that oxygen concentration plays an important role in the formation of &#945;-Al2O3 inclusions between MAX phase layers. The mortar grinding of the MAX phase powder and subsequent MXene fabrication process released the &#945;-Al2O3 impurities, which led to the formation of the porous MXene structures. However, some non-porous &#945;-Al2O3 particles remained inside the MXene structures. Those particles were found ingrown and irremovable, and thus decreased the MXene specific surface area

    Hot-Carrier Noise under Degenerate Conditions

    No full text
    International audienc
    corecore