995 research outputs found

    Optimized cross-slot flow geometry for microfluidic extension rheometry

    Get PDF
    A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model

    Measurement of the 6Li(e,e'p) reaction cross sections at low momentum transfer

    Full text link
    The triple differential cross sections for the 6Li(e,e'p) reaction have been measured in the excitation energy region from 27 to 46 MeV in a search for evidence of the giant dipole resonance (GDR) in 6Li. The cross sections have no distinct structures in this energy region, and decrease smoothly with the energy transfer. Angular distributions are different from those expected with the GDR. Protons are emitted strongly in the momentum-transfer direction. The data are well reproduced by a DWIA calculation assuming a direct proton knockout process.Comment: 19 pages, 7 figures, revised text, to be published in Nucl. Phys.

    A compact proton synchrotron with combined-function lattice dedicated for cancer therapy

    Get PDF
    A compact proton synchrotron with combined function lattice has been designed as a dedicated machine for cancer therapy because of its merits of easy operation and low construction cost. The lattice has a six-fold symmetry and its radius of curvature and circumference are 1.9 m and 23.9 m, respectively. For the purpose of establishing a good reference design, we have constructed a model magnet based on the three-dimensional magnetic field calculation. A magnetic field measurement has been performed with use of a three-dimensional Hall- probe. In the present paper, the results of these developments is presented together with the outline of the reference design. (3 refs)

    Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation

    Get PDF
    Recently, our group has proposed a combinatorial strategy in tissue engineering principles employing carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (CMCht/PAMAM) towards the intracellular release and regimented supply of dexamethasone (Dex) aimed at controlling stem cell osteogenic differentiation in the absence of typical osteogenic inducers, in vivo. In this work, we have investigated if the Dex-loaded CMCht/PAMAM dendrimer nanoparticles could play a crucial role in the regulation of osteogenesis, in vivo. Macroporous hydroxyapatite (HA) scaffolds were seeded with rat bone marrow stromal cells (RBMSCs), whose cells were expanded in MEM medium supplemented with 0.01 mg ml−1 Dexloaded CMCht/PAMAM dendrimer nanoparticles and implanted subcutaneously on the back of rats for 2 and 4 weeks. HA porous ceramics without RBMSCs and RBMSCs/HA scaffold constructs seeded with cells expanded in the presence and absence of 10−8 M Dex were used as controls. The effect of initial cell number seeded in the HA scaffolds on the bone-forming ability of the constructs was also investigated. Qualitative and quantitative new bone formation was evaluated in a non-destructive manner using micro-computed tomography analyses of the explants. Haematoxylin and Eosin stained implant sections were also used for the histomorphometrical analysis. Toluidine blue staining was carried out to investigate the synthesis of proteoglycan extracellular matrix. In addition, alkaline phosphatase and osteocalcin levels in the explants were also quanti!ed, since these markers denote osteogenic differentiation. At 4 weeks post-implantation results have shown that the novel Dex-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles may be bene!cial as an intracellular nanocarrier, supplying Dex in a regimented manner and promoting superior ectopic de novo bone formation.This study was supported by the Portuguese Foundation for Science and Technology (FCT) through POCTI and FEDER programmes (SFRH/BD/21786/2005) and by the Canon Foundation in Europe. We wish to thank P.B. Malafaya for the technical support during the micro-CT analyses, and to Materialise for providing the Mimics software. This work was also supported by the European Union funded STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Instabilities in stagnation point flows of polymer solutions

    Get PDF
    A recently developed microfluidic device, the optimized shape cross-slot extensional rheometer or OSCER [S. J. Haward, M. S. N. Oliveira, M. A. Alves, and G. H. McKinley, “Optimized cross-slot flow geometry for microfluidic extensional rheometry,” Phys. Rev. Lett.109, 128301 (Year: 2012)10.1103/PhysRevLett.109.128301], is used to investigate the stability of viscoelastic polymer solutions in an idealized planar stagnation point flow. Aqueous polymer solutions, consisting of poly(ethylene oxide) and of hyaluronic acid with various molecular weights and concentrations, are formulated in order to provide fluids with a wide range of rheological properties. Semi-dilute solutions of high molecular weight polymers provide highly viscoelastic fluids with long relaxation times, which achieve a high Weissenberg number (Wi) at flow rates for which the Reynolds number (Re) remains low; hence the elasticity number El = Wi/Re is high. Lower concentration solutions of moderate molecular weight polymers provide only weakly viscoelastic fluids in which inertia remains important and El is relatively low. Flow birefringence observations are used to visualize the nature of flow instabilities in the fluids as the volumetric flow rate through the OSCER device is steadily incremented. At low Wi and Re, all of the fluids display a steady, symmetric, and uniform “birefringent strand” of highly oriented polymer molecules aligned along the outflowing symmetry axis of the test geometry, indicating the stability of the flow field under such conditions. In fluids of El > 1, we observe steady elastic flow asymmetries beyond a critical Weissenberg number,Wi [subscript crit], that are similar in character to those already reported in standard cross-slot geometries [e.g., P. E. Arratia, C. C. Thomas, J. Diorio, and J. P. Gollub, “Elastic instabilities of polymer solutions in cross-channel flow,” Phys. Rev. Lett.96, 144502 (Year: 2006)10.1103/PhysRevLett.96.144502]. However, in fluids with El < 1 we observe a sequence of time-dependent inertio-elastic instabilities beyond a critical Reynolds number, Re[subscript crit], characterized by high frequency spatiotemporal oscillations of the birefringent strand. By plotting the critical limits of stability for the various fluids in the Wi-Re operating space, we are able to construct a stability diagram delineating the distinct steady symmetric, steady asymmetric and inertio-elastic flow regimes in this idealized planar elongational flow device.European Commission. Marie Curie Actions (FP7-PEOPLE-2011-IIF Grant 298220)United States. National Aeronautics and Space Administration (Microgravity Fluid Sciences (Code UG) Grant NNX09AV99G
    corecore