10 research outputs found

    Analysis of Ignition Capability of Flammable Gases from Small Arms Propellant Gases

    Get PDF
    The article presents the results of tests on the temperature of propellant gases shortly after the bullet leaves the barrel. The temperature and movement of these gases were recorded with thermal cameras and a high-speed camera. Weapons with and without muzzle devices (flash suppressor, silencer) were used. The aim of the research was to check the capability to ignite flammable gases located in the vicinity of the propellant gases produced during firing. Comparison of the maximum temperature of the propellant gases and the ignition temperature of the flammable gases makes it possible to determine the probability of fire. The lowest temperature of propellant gases was in the case of shooting with 9 19 mm bullets with the lowest kinetic energy (518 J), and the highest temperature of these gases was during shooting with 5.56 45 mm HC (SS109) bullets with the highest kinetic energy (1,785 J)

    Thermal Energy Analysis of Projectiles during Ricochetting Using a Thermal Camera

    No full text
    This paper presents the results of a study of the hazards of ground ignition and/or explosion when various small-calibre projectiles struck various solid materials placed on a test stand in environments at risk of ignition (fire) or explosion (ricochets and projectile penetration of obstacles). For projectile ricochetting tests, the following were used: an armour plate, concrete, sidewalk and granite slabs, etc., and various small-calibre projectiles: 7.62 × 51 mm SWISS PAP, 7.62 × 51T, 7.62 × 51 mm M80, 7.62 × 54R B-32, 7.62 × 54R LPS and .308 Win. Norma Ecostrike. Projectiles impacts were recorded with a high-speed camera (50,400 fps) and thermal cameras (660 fps) and (2615 fps). The ignition capability of solid flammable materials during projectile ricochetting was studied, and the temperatures and surface areas of isotherms were measured as a function of time. From the spherical distribution of thermal energy radiation in space, their volumes, masses of air occupying the studied area, masses of projectile disintegrating into fragments (after impact), thermal energies during projectile ricochetting, histograms of area temperatures and temperatures were calculated. This energy was compared with the minimum ignition energy of the selected gases and liquid vapours, and the ignition temperature were determined. The probabilities of some of the selected gases and liquid vapours which can ignite or cause an explosion were determined. The thermal energies of the 7.62 × 54R B-32 (3400–9500 J) and 7.62 × 51T (2000–3700 J) projectiles ricochetting on the Armox 600 plate was sufficient to ignite (explode) propane−butane gas. The thermal energy of 7.62 × 54R B-32 projectiles ricochets on the non-metallic components (800–1200 J) was several times lower than that of projectiles ricochets on an Armox 600 plate (3400–9500 J). This is due to the transfer of much of the kinetic energy to the crushing of these elements

    Lymphocytes T纬未 in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity

    No full text
    Human T纬蟽 lymphocytes constitute from 1 to 15% of all peripheral blood lymphocytes. Recent work has demonstrated that this population plays a major role in the pathogenesis of infectious and immune diseases. Increased numbers of 纬蟽 T cells have been found in affected skin from systemic sclerosis and chronic cutaneous lupus erythematosus patients

    Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent - a staphylokinase variant

    No full text
    To develop a more potent antithrombin agent with thrombolytic and antiplatelet properties, a new staphylokinase (SAK) variant was constructed. The kringle 2 domain (K2) of tissue type-plasminogen activator (t-PA) containing a fibrin-specific binding site (i), the RGD sequence (Arg-Gly-Asp) for the prevention of platelet aggregation (ii) and the antithrombotic agent - hirulog (iii) was assembled to the C-terminal part of recombinant staphylokinase (r-SAK). cDNA for the hybrid protein SAK-RGD-K2-Hirul was cloned into Pichia pastoris pPIC9K yeast expression vector. The introduction of K2 t-PA, the RGD sequence and hirulog into the C-terminus of r-SAK did not alter the staphylokinase activity. We observed a higher clot lysis potency of SAK-RGD-K2-Hirul as evidenced by a faster and more profound lysis of 125I-labeled human fibrin clots. The potency of thrombin inhibition by the hirulog C-terminal part of the recombinant fusion protein was almost identical to that of r-Hir alone. These results suggest that the SAK-RGD-K2-Hirul construct can be a more potent and faster-acting thrombolytic agent with better antithrombin and antiplatelet properties compared to r-SAK and SAK-RGD-K2-Hir

    Metabolic syndrome is associated with similar long-term prognosis in non-obese and obese patients. An analysis of 45 615 patients from the nationwide LIPIDOGRAM 2004-2015 cohort studies

    No full text
    Aims We aimed to evaluate the association between metabolic syndrome (MetS) and long-term all-cause mortality. Methods The LIPIDOGRAM studies were carried out in the primary care in Poland in 2004, 2006 and 2015. MetS was diagnosed based on the National Cholesterol Education Program, Adult Treatment Panel III (NCEP/ATP III) and Joint Interim Statement (JIS) criteria. The cohort was divided into four groups: non-obese patients without MetS, obese patients without MetS, non-obese patients with MetS and obese patients with MetS. Differences in all-cause mortality was analyzed using Kaplan-Meier and Cox regression analyses. Results 45,615 participants were enrolled (mean age 56.3, standard deviation: 11.8 years; 61.7% female). MetS was diagnosed in 14,202 (31%) by NCEP/ATP III criteria, and 17,216 (37.7%) by JIS criteria. Follow-up was available for 44,620 (97.8%, median duration 15.3 years) patients. MetS was associated with increased mortality risk among the obese (hazard ratio, HR: 1.88 [95% CI, 1.79-1.99] and HR: 1.93 [95% CI 1.82-2.04], according to NCEP/ATP III and JIS criteria, respectively) and non-obese individuals (HR: 2.11 [95% CI 1.85-2.40] and 1.7 [95% CI, 1.56-1.85] according to NCEP/ATP III and JIS criteria respectively). Obese patients without MetS had a higher mortality risk than non-obese patients without MetS (HR: 1.16 [95% CI 1.10-1.23] and HR: 1.22 [95%CI 1.15-1.30], respectively in subgroups with NCEP/ATP III and JIS criteria applied). Conclusions MetS is associated with increased all-cause mortality risk in non-obese and obese patients. In patients without MetS obesity remains significantly associated with mortality. The concept of metabolically healthy obesity should be revised
    corecore